view src/timer/linux/SDL_systimer.c @ 563:04dcaf3da918

Massive Quartz input enhancements from Darrell Walisser. His email: Enclosed is a patch that addresses the following: --Various minor cleanups. Removed dead/obsolete code, made some style cleanups --Mouse Events Now keep track of what button(s) were pressed so we know when to send the mouse up event. This fixes the case where the mouse is dragged outside of the game window and released (in which case we want to send the mouse up event even though the mouse is outside the game window). --Input Grabbing Here is my take on the grabbing situation, which is the basis for the new implementation. There are 3 grab states, ungrabbed (UG), visible (VG), and invisible (IG). Both VG and IG keep the mouse constrained to the window and produce relative motion events. In VG the cursor is visible (duh), in IG it is not. In VG, absolute motion events also work. There are 6 actions that can affect grabbing: 1. Set Fullscreen/Window (F/W). In fullscreen, a visible grab should do nothing. However, a fullscreen visible grab can be treated just like a windowed visible grab, which is what I have done to help simplify things. 2. Cursor hide/show (H/S). If the cursor is hidden when grabbing, the grab is an invisible grab. If the cursor is visible, the grab should just constrain the mouse to the window. 3. Input grab/ungrab(G/U). If grabbed, the cursor should be confined to the window as should the keyboard input. On Mac OS X, the keyboard input is implicitly grabbed by confining the cursor, except for command-tab which can switch away from the application. Should the window come to the foreground if the application is deactivated and grab input is called? This isn't necessary in this implementation because the grab state will be asserted upon activation. Using my notation, these are all the cases that need to be handled (state + action = new state). UG+U = UG UG+G = VG or IG, if cursor is visible or not UG+H = UG UG+S = UG VG+U = UG VG+G = VG VG+H = IG VG+S = VG IG+U = UG IG+G = IG IG+H = IG IG+S = VG The cases that result in the same state can be ignored in the code, which cuts it down to just 5 cases. Another issue is what happens when the app loses/gains input focus from deactivate/activate or iconify/deiconify. I think that if input focus is ever lost (outside of SDL's control), the grab state should be suspended and the cursor should become visible and active again. When regained, the cursor should reappear in its original location and/or grab state. This way, when reactivating the cursor is still in the same position as before so apps shouldn't get confused when the next motion event comes in. This is what I've done in this patch.
author Ryan C. Gordon <icculus@icculus.org>
date Fri, 27 Dec 2002 20:52:41 +0000
parents 104f32d04cd1
children b8d311d90021
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002  Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    Sam Lantinga
    slouken@libsdl.org

    RDTSC stuff by lompik (lompik@voila.fr) 20/03/2002 
*/

#ifdef SAVE_RCSID
static char rcsid =
 "@(#) $Id$";
#endif

#include <stdio.h>
#include <sys/time.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#include "SDL_error.h"
#include "SDL_timer.h"
#include "SDL_timer_c.h"

#if _POSIX_THREAD_SYSCALL_SOFT
#include <pthread.h>
#endif
#ifdef ENABLE_PTH
#include <pth.h>
#endif

#if defined(DISABLE_THREADS) || defined(FORK_HACK)
#define USE_ITIMER
#endif

/* The following defines should really be determined at configure time */

#if defined(linux)
/* Linux select() changes its timeout parameter upon return to contain
   the remaining time. Most other unixen leave it unchanged or undefined. */
#define SELECT_SETS_REMAINING
#elif defined(__bsdi__) || defined(__FreeBSD__) || defined(__sun)
#define USE_NANOSLEEP
#endif

#if defined(i386) || defined(__i386__)
/* This only works on pentium or newer x86 processors */
/* Actually, this isn't reliable on multi-cpu systems, so is disabled */
/*#define USE_RDTSC*/
#endif


#ifdef USE_RDTSC 

/* The first ticks value of the application */
static unsigned long long start;
static float cpu_mhz1000 = 0.0f;

#if 1
/* This is for old binutils version that don't recognize rdtsc mnemonics.
   But all binutils version supports this.
*/
#define rdtsc(t) asm __volatile__ (".byte 0x0f, 0x31; " : "=A" (t))
#else
#define rdtsc(t) asm __volatile__ ("rdtsc" : "=A" (t))
#endif

static float calc_cpu_mhz(void)
{
	float cpu_mhz;
	unsigned long long tsc_start;
	unsigned long long tsc_end;
	struct timeval tv_start, tv_end;
	long usec_delay;

	rdtsc(tsc_start);
	gettimeofday(&tv_start, NULL);
	sleep(1);
	rdtsc(tsc_end);
	gettimeofday(&tv_end, NULL);
	usec_delay = 1000000L * (tv_end.tv_sec - tv_start.tv_sec) +
	                        (tv_end.tv_usec - tv_start.tv_usec);
	cpu_mhz = (float)(tsc_end-tsc_start) / usec_delay;
#if 0
	printf("cpu MHz\t\t: %.3f\n", cpu_mhz);
#endif
	return cpu_mhz;
}

#else

/* The first ticks value of the application */
static struct timeval start;

#endif  /* USE_RDTSC */


void SDL_StartTicks(void)
{
	/* Set first ticks value */
#ifdef USE_RDTSC
	if ( ! cpu_mhz1000 ) {
		cpu_mhz1000 = calc_cpu_mhz() * 1000.0f;
	}
	rdtsc(start);
#else
	gettimeofday(&start, NULL);
#endif /* USE_RDTSC */
}

Uint32 SDL_GetTicks (void)
{
#ifdef USE_RDTSC 
	unsigned long long now;
	if ( ! cpu_mhz1000 ) {
		return 0; /* Shouldn't happen. BUG!! */
	}
	rdtsc(now);
	return (Uint32)((now-start)/cpu_mhz1000);
#else
	struct timeval now;
	Uint32 ticks;

	gettimeofday(&now, NULL);
	ticks=(now.tv_sec-start.tv_sec)*1000+(now.tv_usec-start.tv_usec)/1000;
	return(ticks);
#endif /* USE_RDTSC */
}

void SDL_Delay (Uint32 ms)
{
#ifdef ENABLE_PTH
	pth_time_t tv;
	tv.tv_sec  =  ms/1000;
	tv.tv_usec = (ms%1000)*1000;
	pth_nap(tv);
#else
	int was_error;

#ifdef USE_NANOSLEEP
	struct timespec elapsed, tv;
#else
	struct timeval tv;
#ifndef SELECT_SETS_REMAINING
	Uint32 then, now, elapsed;
#endif
#endif

	/* Set the timeout interval - Linux only needs to do this once */
#ifdef SELECT_SETS_REMAINING
	tv.tv_sec = ms/1000;
	tv.tv_usec = (ms%1000)*1000;
#elif defined(USE_NANOSLEEP)
	elapsed.tv_sec = ms/1000;
	elapsed.tv_nsec = (ms%1000)*1000000;
#else
	then = SDL_GetTicks();
#endif
	do {
		errno = 0;

#if _POSIX_THREAD_SYSCALL_SOFT
		pthread_yield_np();
#endif
#ifdef USE_NANOSLEEP
		tv.tv_sec = elapsed.tv_sec;
		tv.tv_nsec = elapsed.tv_nsec;
		was_error = nanosleep(&tv, &elapsed);
#else
#ifndef SELECT_SETS_REMAINING
		/* Calculate the time interval left (in case of interrupt) */
		now = SDL_GetTicks();
		elapsed = (now-then);
		then = now;
		if ( elapsed >= ms ) {
			break;
		}
		ms -= elapsed;
		tv.tv_sec = ms/1000;
		tv.tv_usec = (ms%1000)*1000;
#endif
		was_error = select(0, NULL, NULL, NULL, &tv);
#endif /* USE_NANOSLEEP */
	} while ( was_error && (errno == EINTR) );
#endif /* ENABLE_PTH */
}

#ifdef USE_ITIMER

static void HandleAlarm(int sig)
{
	Uint32 ms;

	if ( SDL_alarm_callback ) {
		ms = (*SDL_alarm_callback)(SDL_alarm_interval);
		if ( ms != SDL_alarm_interval ) {
			SDL_SetTimer(ms, SDL_alarm_callback);
		}
	}
}

int SDL_SYS_TimerInit(void)
{
	struct sigaction action;

	/* Set the alarm handler (Linux specific) */
	memset(&action, 0, sizeof(action));
	action.sa_handler = HandleAlarm;
	action.sa_flags = SA_RESTART;
	sigemptyset(&action.sa_mask);
	sigaction(SIGALRM, &action, NULL);
	return(0);
}

void SDL_SYS_TimerQuit(void)
{
	SDL_SetTimer(0, NULL);
}

int SDL_SYS_StartTimer(void)
{
	struct itimerval timer;

	timer.it_value.tv_sec = (SDL_alarm_interval/1000);
	timer.it_value.tv_usec = (SDL_alarm_interval%1000)*1000;
	timer.it_interval.tv_sec = (SDL_alarm_interval/1000);
	timer.it_interval.tv_usec = (SDL_alarm_interval%1000)*1000;
	setitimer(ITIMER_REAL, &timer, NULL);
	return(0);
}

void SDL_SYS_StopTimer(void)
{
	struct itimerval timer;

	memset(&timer, 0, (sizeof timer));
	setitimer(ITIMER_REAL, &timer, NULL);
}

#else /* USE_ITIMER */

#include "SDL_thread.h"

/* Data to handle a single periodic alarm */
static int timer_alive = 0;
static SDL_Thread *timer = NULL;

static int RunTimer(void *unused)
{
	while ( timer_alive ) {
		if ( SDL_timer_running ) {
			SDL_ThreadedTimerCheck();
		}
		SDL_Delay(1);
	}
	return(0);
}

/* This is only called if the event thread is not running */
int SDL_SYS_TimerInit(void)
{
	timer_alive = 1;
	timer = SDL_CreateThread(RunTimer, NULL);
	if ( timer == NULL )
		return(-1);
	return(SDL_SetTimerThreaded(1));
}

void SDL_SYS_TimerQuit(void)
{
	timer_alive = 0;
	if ( timer ) {
		SDL_WaitThread(timer, NULL);
		timer = NULL;
	}
}

int SDL_SYS_StartTimer(void)
{
	SDL_SetError("Internal logic error: Linux uses threaded timer");
	return(-1);
}

void SDL_SYS_StopTimer(void)
{
	return;
}

#endif /* USE_ITIMER */