comparison src/libm/e_sqrt.c @ 2756:a98604b691c8

Expanded the libm support and put it into a separate directory.
author Sam Lantinga <slouken@libsdl.org>
date Mon, 15 Sep 2008 06:33:23 +0000
parents
children dc1eb82ffdaa
comparison
equal deleted inserted replaced
2755:2a3ec308d995 2756:a98604b691c8
1 /* @(#)e_sqrt.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
15 #endif
16
17 /* __ieee754_sqrt(x)
18 * Return correctly rounded sqrt.
19 * ------------------------------------------
20 * | Use the hardware sqrt if you have one |
21 * ------------------------------------------
22 * Method:
23 * Bit by bit method using integer arithmetic. (Slow, but portable)
24 * 1. Normalization
25 * Scale x to y in [1,4) with even powers of 2:
26 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
27 * sqrt(x) = 2^k * sqrt(y)
28 * 2. Bit by bit computation
29 * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
30 * i 0
31 * i+1 2
32 * s = 2*q , and y = 2 * ( y - q ). (1)
33 * i i i i
34 *
35 * To compute q from q , one checks whether
36 * i+1 i
37 *
38 * -(i+1) 2
39 * (q + 2 ) <= y. (2)
40 * i
41 * -(i+1)
42 * If (2) is false, then q = q ; otherwise q = q + 2 .
43 * i+1 i i+1 i
44 *
45 * With some algebric manipulation, it is not difficult to see
46 * that (2) is equivalent to
47 * -(i+1)
48 * s + 2 <= y (3)
49 * i i
50 *
51 * The advantage of (3) is that s and y can be computed by
52 * i i
53 * the following recurrence formula:
54 * if (3) is false
55 *
56 * s = s , y = y ; (4)
57 * i+1 i i+1 i
58 *
59 * otherwise,
60 * -i -(i+1)
61 * s = s + 2 , y = y - s - 2 (5)
62 * i+1 i i+1 i i
63 *
64 * One may easily use induction to prove (4) and (5).
65 * Note. Since the left hand side of (3) contain only i+2 bits,
66 * it does not necessary to do a full (53-bit) comparison
67 * in (3).
68 * 3. Final rounding
69 * After generating the 53 bits result, we compute one more bit.
70 * Together with the remainder, we can decide whether the
71 * result is exact, bigger than 1/2ulp, or less than 1/2ulp
72 * (it will never equal to 1/2ulp).
73 * The rounding mode can be detected by checking whether
74 * huge + tiny is equal to huge, and whether huge - tiny is
75 * equal to huge for some floating point number "huge" and "tiny".
76 *
77 * Special cases:
78 * sqrt(+-0) = +-0 ... exact
79 * sqrt(inf) = inf
80 * sqrt(-ve) = NaN ... with invalid signal
81 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
82 *
83 * Other methods : see the appended file at the end of the program below.
84 *---------------
85 */
86
87 #include "math.h"
88 #include "math_private.h"
89
90 #ifdef __STDC__
91 static const double one = 1.0, tiny = 1.0e-300;
92 #else
93 static double one = 1.0, tiny = 1.0e-300;
94 #endif
95
96 #ifdef __STDC__
97 double attribute_hidden
98 __ieee754_sqrt(double x)
99 #else
100 double attribute_hidden
101 __ieee754_sqrt(x)
102 double x;
103 #endif
104 {
105 double z;
106 int32_t sign = (int) 0x80000000;
107 int32_t ix0, s0, q, m, t, i;
108 u_int32_t r, t1, s1, ix1, q1;
109
110 EXTRACT_WORDS(ix0, ix1, x);
111
112 /* take care of Inf and NaN */
113 if ((ix0 & 0x7ff00000) == 0x7ff00000) {
114 return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
115 sqrt(-inf)=sNaN */
116 }
117 /* take care of zero */
118 if (ix0 <= 0) {
119 if (((ix0 & (~sign)) | ix1) == 0)
120 return x; /* sqrt(+-0) = +-0 */
121 else if (ix0 < 0)
122 return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
123 }
124 /* normalize x */
125 m = (ix0 >> 20);
126 if (m == 0) { /* subnormal x */
127 while (ix0 == 0) {
128 m -= 21;
129 ix0 |= (ix1 >> 11);
130 ix1 <<= 21;
131 }
132 for (i = 0; (ix0 & 0x00100000) == 0; i++)
133 ix0 <<= 1;
134 m -= i - 1;
135 ix0 |= (ix1 >> (32 - i));
136 ix1 <<= i;
137 }
138 m -= 1023; /* unbias exponent */
139 ix0 = (ix0 & 0x000fffff) | 0x00100000;
140 if (m & 1) { /* odd m, double x to make it even */
141 ix0 += ix0 + ((ix1 & sign) >> 31);
142 ix1 += ix1;
143 }
144 m >>= 1; /* m = [m/2] */
145
146 /* generate sqrt(x) bit by bit */
147 ix0 += ix0 + ((ix1 & sign) >> 31);
148 ix1 += ix1;
149 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
150 r = 0x00200000; /* r = moving bit from right to left */
151
152 while (r != 0) {
153 t = s0 + r;
154 if (t <= ix0) {
155 s0 = t + r;
156 ix0 -= t;
157 q += r;
158 }
159 ix0 += ix0 + ((ix1 & sign) >> 31);
160 ix1 += ix1;
161 r >>= 1;
162 }
163
164 r = sign;
165 while (r != 0) {
166 t1 = s1 + r;
167 t = s0;
168 if ((t < ix0) || ((t == ix0) && (t1 <= ix1))) {
169 s1 = t1 + r;
170 if (((t1 & sign) == sign) && (s1 & sign) == 0)
171 s0 += 1;
172 ix0 -= t;
173 if (ix1 < t1)
174 ix0 -= 1;
175 ix1 -= t1;
176 q1 += r;
177 }
178 ix0 += ix0 + ((ix1 & sign) >> 31);
179 ix1 += ix1;
180 r >>= 1;
181 }
182
183 /* use floating add to find out rounding direction */
184 if ((ix0 | ix1) != 0) {
185 z = one - tiny; /* trigger inexact flag */
186 if (z >= one) {
187 z = one + tiny;
188 if (q1 == (u_int32_t) 0xffffffff) {
189 q1 = 0;
190 q += 1;
191 } else if (z > one) {
192 if (q1 == (u_int32_t) 0xfffffffe)
193 q += 1;
194 q1 += 2;
195 } else
196 q1 += (q1 & 1);
197 }
198 }
199 ix0 = (q >> 1) + 0x3fe00000;
200 ix1 = q1 >> 1;
201 if ((q & 1) == 1)
202 ix1 |= sign;
203 ix0 += (m << 20);
204 INSERT_WORDS(z, ix0, ix1);
205 return z;
206 }
207
208 /*
209 Other methods (use floating-point arithmetic)
210 -------------
211 (This is a copy of a drafted paper by Prof W. Kahan
212 and K.C. Ng, written in May, 1986)
213
214 Two algorithms are given here to implement sqrt(x)
215 (IEEE double precision arithmetic) in software.
216 Both supply sqrt(x) correctly rounded. The first algorithm (in
217 Section A) uses newton iterations and involves four divisions.
218 The second one uses reciproot iterations to avoid division, but
219 requires more multiplications. Both algorithms need the ability
220 to chop results of arithmetic operations instead of round them,
221 and the INEXACT flag to indicate when an arithmetic operation
222 is executed exactly with no roundoff error, all part of the
223 standard (IEEE 754-1985). The ability to perform shift, add,
224 subtract and logical AND operations upon 32-bit words is needed
225 too, though not part of the standard.
226
227 A. sqrt(x) by Newton Iteration
228
229 (1) Initial approximation
230
231 Let x0 and x1 be the leading and the trailing 32-bit words of
232 a floating point number x (in IEEE double format) respectively
233
234 1 11 52 ...widths
235 ------------------------------------------------------
236 x: |s| e | f |
237 ------------------------------------------------------
238 msb lsb msb lsb ...order
239
240
241 ------------------------ ------------------------
242 x0: |s| e | f1 | x1: | f2 |
243 ------------------------ ------------------------
244
245 By performing shifts and subtracts on x0 and x1 (both regarded
246 as integers), we obtain an 8-bit approximation of sqrt(x) as
247 follows.
248
249 k := (x0>>1) + 0x1ff80000;
250 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
251 Here k is a 32-bit integer and T1[] is an integer array containing
252 correction terms. Now magically the floating value of y (y's
253 leading 32-bit word is y0, the value of its trailing word is 0)
254 approximates sqrt(x) to almost 8-bit.
255
256 Value of T1:
257 static int T1[32]= {
258 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
259 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
260 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
261 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
262
263 (2) Iterative refinement
264
265 Apply Heron's rule three times to y, we have y approximates
266 sqrt(x) to within 1 ulp (Unit in the Last Place):
267
268 y := (y+x/y)/2 ... almost 17 sig. bits
269 y := (y+x/y)/2 ... almost 35 sig. bits
270 y := y-(y-x/y)/2 ... within 1 ulp
271
272
273 Remark 1.
274 Another way to improve y to within 1 ulp is:
275
276 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
277 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
278
279 2
280 (x-y )*y
281 y := y + 2* ---------- ...within 1 ulp
282 2
283 3y + x
284
285
286 This formula has one division fewer than the one above; however,
287 it requires more multiplications and additions. Also x must be
288 scaled in advance to avoid spurious overflow in evaluating the
289 expression 3y*y+x. Hence it is not recommended uless division
290 is slow. If division is very slow, then one should use the
291 reciproot algorithm given in section B.
292
293 (3) Final adjustment
294
295 By twiddling y's last bit it is possible to force y to be
296 correctly rounded according to the prevailing rounding mode
297 as follows. Let r and i be copies of the rounding mode and
298 inexact flag before entering the square root program. Also we
299 use the expression y+-ulp for the next representable floating
300 numbers (up and down) of y. Note that y+-ulp = either fixed
301 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
302 mode.
303
304 I := FALSE; ... reset INEXACT flag I
305 R := RZ; ... set rounding mode to round-toward-zero
306 z := x/y; ... chopped quotient, possibly inexact
307 If(not I) then { ... if the quotient is exact
308 if(z=y) {
309 I := i; ... restore inexact flag
310 R := r; ... restore rounded mode
311 return sqrt(x):=y.
312 } else {
313 z := z - ulp; ... special rounding
314 }
315 }
316 i := TRUE; ... sqrt(x) is inexact
317 If (r=RN) then z=z+ulp ... rounded-to-nearest
318 If (r=RP) then { ... round-toward-+inf
319 y = y+ulp; z=z+ulp;
320 }
321 y := y+z; ... chopped sum
322 y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
323 I := i; ... restore inexact flag
324 R := r; ... restore rounded mode
325 return sqrt(x):=y.
326
327 (4) Special cases
328
329 Square root of +inf, +-0, or NaN is itself;
330 Square root of a negative number is NaN with invalid signal.
331
332
333 B. sqrt(x) by Reciproot Iteration
334
335 (1) Initial approximation
336
337 Let x0 and x1 be the leading and the trailing 32-bit words of
338 a floating point number x (in IEEE double format) respectively
339 (see section A). By performing shifs and subtracts on x0 and y0,
340 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
341
342 k := 0x5fe80000 - (x0>>1);
343 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
344
345 Here k is a 32-bit integer and T2[] is an integer array
346 containing correction terms. Now magically the floating
347 value of y (y's leading 32-bit word is y0, the value of
348 its trailing word y1 is set to zero) approximates 1/sqrt(x)
349 to almost 7.8-bit.
350
351 Value of T2:
352 static int T2[64]= {
353 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
354 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
355 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
356 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
357 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
358 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
359 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
360 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
361
362 (2) Iterative refinement
363
364 Apply Reciproot iteration three times to y and multiply the
365 result by x to get an approximation z that matches sqrt(x)
366 to about 1 ulp. To be exact, we will have
367 -1ulp < sqrt(x)-z<1.0625ulp.
368
369 ... set rounding mode to Round-to-nearest
370 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
371 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
372 ... special arrangement for better accuracy
373 z := x*y ... 29 bits to sqrt(x), with z*y<1
374 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
375
376 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
377 (a) the term z*y in the final iteration is always less than 1;
378 (b) the error in the final result is biased upward so that
379 -1 ulp < sqrt(x) - z < 1.0625 ulp
380 instead of |sqrt(x)-z|<1.03125ulp.
381
382 (3) Final adjustment
383
384 By twiddling y's last bit it is possible to force y to be
385 correctly rounded according to the prevailing rounding mode
386 as follows. Let r and i be copies of the rounding mode and
387 inexact flag before entering the square root program. Also we
388 use the expression y+-ulp for the next representable floating
389 numbers (up and down) of y. Note that y+-ulp = either fixed
390 point y+-1, or multiply y by nextafter(1,+-inf) in chopped
391 mode.
392
393 R := RZ; ... set rounding mode to round-toward-zero
394 switch(r) {
395 case RN: ... round-to-nearest
396 if(x<= z*(z-ulp)...chopped) z = z - ulp; else
397 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
398 break;
399 case RZ:case RM: ... round-to-zero or round-to--inf
400 R:=RP; ... reset rounding mod to round-to-+inf
401 if(x<z*z ... rounded up) z = z - ulp; else
402 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
403 break;
404 case RP: ... round-to-+inf
405 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
406 if(x>z*z ...chopped) z = z+ulp;
407 break;
408 }
409
410 Remark 3. The above comparisons can be done in fixed point. For
411 example, to compare x and w=z*z chopped, it suffices to compare
412 x1 and w1 (the trailing parts of x and w), regarding them as
413 two's complement integers.
414
415 ...Is z an exact square root?
416 To determine whether z is an exact square root of x, let z1 be the
417 trailing part of z, and also let x0 and x1 be the leading and
418 trailing parts of x.
419
420 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
421 I := 1; ... Raise Inexact flag: z is not exact
422 else {
423 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
424 k := z1 >> 26; ... get z's 25-th and 26-th
425 fraction bits
426 I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
427 }
428 R:= r ... restore rounded mode
429 return sqrt(x):=z.
430
431 If multiplication is cheaper then the foregoing red tape, the
432 Inexact flag can be evaluated by
433
434 I := i;
435 I := (z*z!=x) or I.
436
437 Note that z*z can overwrite I; this value must be sensed if it is
438 True.
439
440 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
441 zero.
442
443 --------------------
444 z1: | f2 |
445 --------------------
446 bit 31 bit 0
447
448 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
449 or even of logb(x) have the following relations:
450
451 -------------------------------------------------
452 bit 27,26 of z1 bit 1,0 of x1 logb(x)
453 -------------------------------------------------
454 00 00 odd and even
455 01 01 even
456 10 10 odd
457 10 00 even
458 11 01 even
459 -------------------------------------------------
460
461 (4) Special cases (see (4) of Section A).
462
463 */