Mercurial > sdl-ios-xcode
comparison src/libm/e_log.c @ 2756:a98604b691c8
Expanded the libm support and put it into a separate directory.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 15 Sep 2008 06:33:23 +0000 |
parents | |
children | dc1eb82ffdaa |
comparison
equal
deleted
inserted
replaced
2755:2a3ec308d995 | 2756:a98604b691c8 |
---|---|
1 /* @(#)e_log.c 5.1 93/09/24 */ | |
2 /* | |
3 * ==================================================== | |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 * | |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 * Permission to use, copy, modify, and distribute this | |
8 * software is freely granted, provided that this notice | |
9 * is preserved. | |
10 * ==================================================== | |
11 */ | |
12 | |
13 #if defined(LIBM_SCCS) && !defined(lint) | |
14 static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; | |
15 #endif | |
16 | |
17 /* __ieee754_log(x) | |
18 * Return the logrithm of x | |
19 * | |
20 * Method : | |
21 * 1. Argument Reduction: find k and f such that | |
22 * x = 2^k * (1+f), | |
23 * where sqrt(2)/2 < 1+f < sqrt(2) . | |
24 * | |
25 * 2. Approximation of log(1+f). | |
26 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | |
27 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., | |
28 * = 2s + s*R | |
29 * We use a special Reme algorithm on [0,0.1716] to generate | |
30 * a polynomial of degree 14 to approximate R The maximum error | |
31 * of this polynomial approximation is bounded by 2**-58.45. In | |
32 * other words, | |
33 * 2 4 6 8 10 12 14 | |
34 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s | |
35 * (the values of Lg1 to Lg7 are listed in the program) | |
36 * and | |
37 * | 2 14 | -58.45 | |
38 * | Lg1*s +...+Lg7*s - R(z) | <= 2 | |
39 * | | | |
40 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | |
41 * In order to guarantee error in log below 1ulp, we compute log | |
42 * by | |
43 * log(1+f) = f - s*(f - R) (if f is not too large) | |
44 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) | |
45 * | |
46 * 3. Finally, log(x) = k*ln2 + log(1+f). | |
47 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | |
48 * Here ln2 is split into two floating point number: | |
49 * ln2_hi + ln2_lo, | |
50 * where n*ln2_hi is always exact for |n| < 2000. | |
51 * | |
52 * Special cases: | |
53 * log(x) is NaN with signal if x < 0 (including -INF) ; | |
54 * log(+INF) is +INF; log(0) is -INF with signal; | |
55 * log(NaN) is that NaN with no signal. | |
56 * | |
57 * Accuracy: | |
58 * according to an error analysis, the error is always less than | |
59 * 1 ulp (unit in the last place). | |
60 * | |
61 * Constants: | |
62 * The hexadecimal values are the intended ones for the following | |
63 * constants. The decimal values may be used, provided that the | |
64 * compiler will convert from decimal to binary accurately enough | |
65 * to produce the hexadecimal values shown. | |
66 */ | |
67 | |
68 #include "math.h" | |
69 #include "math_private.h" | |
70 | |
71 #ifdef __STDC__ | |
72 static const double | |
73 #else | |
74 static double | |
75 #endif | |
76 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ | |
77 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ | |
78 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ | |
79 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ | |
80 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ | |
81 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ | |
82 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ | |
83 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ | |
84 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ | |
85 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ | |
86 | |
87 #ifdef __STDC__ | |
88 static const double zero = 0.0; | |
89 #else | |
90 static double zero = 0.0; | |
91 #endif | |
92 | |
93 #ifdef __STDC__ | |
94 double attribute_hidden | |
95 __ieee754_log(double x) | |
96 #else | |
97 double attribute_hidden | |
98 __ieee754_log(x) | |
99 double x; | |
100 #endif | |
101 { | |
102 double hfsq, f, s, z, R, w, t1, t2, dk; | |
103 int32_t k, hx, i, j; | |
104 u_int32_t lx; | |
105 | |
106 EXTRACT_WORDS(hx, lx, x); | |
107 | |
108 k = 0; | |
109 if (hx < 0x00100000) { /* x < 2**-1022 */ | |
110 if (((hx & 0x7fffffff) | lx) == 0) | |
111 return -two54 / zero; /* log(+-0)=-inf */ | |
112 if (hx < 0) | |
113 return (x - x) / zero; /* log(-#) = NaN */ | |
114 k -= 54; | |
115 x *= two54; /* subnormal number, scale up x */ | |
116 GET_HIGH_WORD(hx, x); | |
117 } | |
118 if (hx >= 0x7ff00000) | |
119 return x + x; | |
120 k += (hx >> 20) - 1023; | |
121 hx &= 0x000fffff; | |
122 i = (hx + 0x95f64) & 0x100000; | |
123 SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ | |
124 k += (i >> 20); | |
125 f = x - 1.0; | |
126 if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */ | |
127 if (f == zero) { | |
128 if (k == 0) | |
129 return zero; | |
130 else { | |
131 dk = (double) k; | |
132 return dk * ln2_hi + dk * ln2_lo; | |
133 } | |
134 } | |
135 R = f * f * (0.5 - 0.33333333333333333 * f); | |
136 if (k == 0) | |
137 return f - R; | |
138 else { | |
139 dk = (double) k; | |
140 return dk * ln2_hi - ((R - dk * ln2_lo) - f); | |
141 } | |
142 } | |
143 s = f / (2.0 + f); | |
144 dk = (double) k; | |
145 z = s * s; | |
146 i = hx - 0x6147a; | |
147 w = z * z; | |
148 j = 0x6b851 - hx; | |
149 t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); | |
150 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); | |
151 i |= j; | |
152 R = t2 + t1; | |
153 if (i > 0) { | |
154 hfsq = 0.5 * f * f; | |
155 if (k == 0) | |
156 return f - (hfsq - s * (hfsq + R)); | |
157 else | |
158 return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - | |
159 f); | |
160 } else { | |
161 if (k == 0) | |
162 return f - s * (f - R); | |
163 else | |
164 return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); | |
165 } | |
166 } |