Mercurial > sdl-ios-xcode
comparison src/video/SDL_RLEaccel.c @ 0:74212992fb08
Initial revision
author | Sam Lantinga <slouken@lokigames.com> |
---|---|
date | Thu, 26 Apr 2001 16:45:43 +0000 |
parents | |
children | cf2af46e9e2a |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:74212992fb08 |
---|---|
1 /* | |
2 SDL - Simple DirectMedia Layer | |
3 Copyright (C) 1997, 1998, 1999, 2000, 2001 Sam Lantinga | |
4 | |
5 This library is free software; you can redistribute it and/or | |
6 modify it under the terms of the GNU Library General Public | |
7 License as published by the Free Software Foundation; either | |
8 version 2 of the License, or (at your option) any later version. | |
9 | |
10 This library is distributed in the hope that it will be useful, | |
11 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 Library General Public License for more details. | |
14 | |
15 You should have received a copy of the GNU Library General Public | |
16 License along with this library; if not, write to the Free | |
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
18 | |
19 Sam Lantinga | |
20 slouken@devolution.com | |
21 */ | |
22 | |
23 #ifdef SAVE_RCSID | |
24 static char rcsid = | |
25 "@(#) $Id$"; | |
26 #endif | |
27 | |
28 /* | |
29 * RLE encoding for software colorkey and alpha-channel acceleration | |
30 * | |
31 * Original version by Sam Lantinga | |
32 * | |
33 * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and | |
34 * decoder. Added per-surface alpha blitter. Added per-pixel alpha | |
35 * format, encoder and blitter. | |
36 * | |
37 * Many thanks to Xark and johns for hints, benchmarks and useful comments | |
38 * leading to this code. | |
39 * | |
40 * Welcome to Macro Mayhem. | |
41 */ | |
42 | |
43 /* | |
44 * The encoding translates the image data to a stream of segments of the form | |
45 * | |
46 * <skip> <run> <data> | |
47 * | |
48 * where <skip> is the number of transparent pixels to skip, | |
49 * <run> is the number of opaque pixels to blit, | |
50 * and <data> are the pixels themselves. | |
51 * | |
52 * This basic structure is used both for colorkeyed surfaces, used for simple | |
53 * binary transparency and for per-surface alpha blending, and for surfaces | |
54 * with per-pixel alpha. The details differ, however: | |
55 * | |
56 * Encoding of colorkeyed surfaces: | |
57 * | |
58 * Encoded pixels always have the same format as the target surface. | |
59 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth | |
60 * where they are 16 bit. This makes the pixel data aligned at all times. | |
61 * Segments never wrap around from one scan line to the next. | |
62 * | |
63 * The end of the sequence is marked by a zero <skip>,<run> pair at the * | |
64 * beginning of a line. | |
65 * | |
66 * Encoding of surfaces with per-pixel alpha: | |
67 * | |
68 * The sequence begins with a struct RLEDestFormat describing the target | |
69 * pixel format, to provide reliable un-encoding. | |
70 * | |
71 * Each scan line is encoded twice: First all completely opaque pixels, | |
72 * encoded in the target format as described above, and then all | |
73 * partially transparent (translucent) pixels (where 1 <= alpha <= 254), | |
74 * in the following 32-bit format: | |
75 * | |
76 * For 32-bit targets, each pixel has the target RGB format but with | |
77 * the alpha value occupying the highest 8 bits. The <skip> and <run> | |
78 * counts are 16 bit. | |
79 * | |
80 * For 16-bit targets, each pixel has the target RGB format, but with | |
81 * the middle component (usually green) shifted 16 steps to the left, | |
82 * and the hole filled with the 5 most significant bits of the alpha value. | |
83 * i.e. if the target has the format rrrrrggggggbbbbb, | |
84 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb. | |
85 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit | |
86 * for the translucent lines. Two padding bytes may be inserted | |
87 * before each translucent line to keep them 32-bit aligned. | |
88 * | |
89 * The end of the sequence is marked by a zero <skip>,<run> pair at the | |
90 * beginning of an opaque line. | |
91 */ | |
92 | |
93 #include <stdio.h> | |
94 #include <stdlib.h> | |
95 #include <string.h> | |
96 | |
97 #include "SDL_types.h" | |
98 #include "SDL_video.h" | |
99 #include "SDL_error.h" | |
100 #include "SDL_sysvideo.h" | |
101 #include "SDL_blit.h" | |
102 #include "SDL_memops.h" | |
103 #include "SDL_RLEaccel_c.h" | |
104 | |
105 #ifndef MAX | |
106 #define MAX(a, b) ((a) > (b) ? (a) : (b)) | |
107 #endif | |
108 #ifndef MIN | |
109 #define MIN(a, b) ((a) < (b) ? (a) : (b)) | |
110 #endif | |
111 | |
112 /* | |
113 * Various colorkey blit methods, for opaque and per-surface alpha | |
114 */ | |
115 | |
116 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \ | |
117 SDL_memcpy(to, from, (unsigned)(length * bpp)) | |
118 | |
119 /* | |
120 * For 32bpp pixels on the form 0x00rrggbb: | |
121 * If we treat the middle component separately, we can process the two | |
122 * remaining in parallel. This is safe to do because of the gap to the left | |
123 * of each component, so the bits from the multiplication don't collide. | |
124 * This can be used for any RGB permutation of course. | |
125 */ | |
126 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \ | |
127 do { \ | |
128 int i; \ | |
129 Uint32 *src = (Uint32 *)(from); \ | |
130 Uint32 *dst = (Uint32 *)(to); \ | |
131 for(i = 0; i < (int)(length); i++) { \ | |
132 Uint32 s = *src++; \ | |
133 Uint32 d = *dst; \ | |
134 Uint32 s1 = s & 0xff00ff; \ | |
135 Uint32 d1 = d & 0xff00ff; \ | |
136 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ | |
137 s &= 0xff00; \ | |
138 d &= 0xff00; \ | |
139 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ | |
140 *dst++ = d1 | d; \ | |
141 } \ | |
142 } while(0) | |
143 | |
144 /* | |
145 * For 16bpp pixels we can go a step further: put the middle component | |
146 * in the high 16 bits of a 32 bit word, and process all three RGB | |
147 * components at the same time. Since the smallest gap is here just | |
148 * 5 bits, we have to scale alpha down to 5 bits as well. | |
149 */ | |
150 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \ | |
151 do { \ | |
152 int i; \ | |
153 Uint16 *src = (Uint16 *)(from); \ | |
154 Uint16 *dst = (Uint16 *)(to); \ | |
155 for(i = 0; i < (int)(length); i++) { \ | |
156 Uint32 s = *src++; \ | |
157 Uint32 d = *dst; \ | |
158 s = (s | s << 16) & 0x07e0f81f; \ | |
159 d = (d | d << 16) & 0x07e0f81f; \ | |
160 d += (s - d) * alpha >> 5; \ | |
161 d &= 0x07e0f81f; \ | |
162 *dst++ = d | d >> 16; \ | |
163 } \ | |
164 } while(0) | |
165 | |
166 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \ | |
167 do { \ | |
168 int i; \ | |
169 Uint16 *src = (Uint16 *)(from); \ | |
170 Uint16 *dst = (Uint16 *)(to); \ | |
171 for(i = 0; i < (int)(length); i++) { \ | |
172 Uint32 s = *src++; \ | |
173 Uint32 d = *dst; \ | |
174 s = (s | s << 16) & 0x03e07c1f; \ | |
175 d = (d | d << 16) & 0x03e07c1f; \ | |
176 d += (s - d) * alpha >> 5; \ | |
177 d &= 0x03e07c1f; \ | |
178 *dst++ = d | d >> 16; \ | |
179 } \ | |
180 } while(0) | |
181 | |
182 /* | |
183 * The general slow catch-all function, for remaining depths and formats | |
184 */ | |
185 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \ | |
186 do { \ | |
187 int i; \ | |
188 Uint8 *src = from; \ | |
189 Uint8 *dst = to; \ | |
190 for(i = 0; i < (int)(length); i++) { \ | |
191 Uint32 s, d; \ | |
192 unsigned rs, gs, bs, rd, gd, bd; \ | |
193 switch(bpp) { \ | |
194 case 2: \ | |
195 s = *(Uint16 *)src; \ | |
196 d = *(Uint16 *)dst; \ | |
197 break; \ | |
198 case 3: \ | |
199 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ | |
200 s = (src[0] << 16) | (src[1] << 8) | src[2]; \ | |
201 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \ | |
202 } else { \ | |
203 s = (src[2] << 16) | (src[1] << 8) | src[0]; \ | |
204 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \ | |
205 } \ | |
206 break; \ | |
207 case 4: \ | |
208 s = *(Uint32 *)src; \ | |
209 d = *(Uint32 *)dst; \ | |
210 break; \ | |
211 } \ | |
212 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \ | |
213 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \ | |
214 rd += (rs - rd) * alpha >> 8; \ | |
215 gd += (gs - gd) * alpha >> 8; \ | |
216 bd += (bs - bd) * alpha >> 8; \ | |
217 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \ | |
218 switch(bpp) { \ | |
219 case 2: \ | |
220 *(Uint16 *)dst = d; \ | |
221 break; \ | |
222 case 3: \ | |
223 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ | |
224 dst[0] = d >> 16; \ | |
225 dst[1] = d >> 8; \ | |
226 dst[2] = d; \ | |
227 } else { \ | |
228 dst[0] = d; \ | |
229 dst[1] = d >> 8; \ | |
230 dst[2] = d >> 16; \ | |
231 } \ | |
232 break; \ | |
233 case 4: \ | |
234 *(Uint32 *)dst = d; \ | |
235 break; \ | |
236 } \ | |
237 src += bpp; \ | |
238 dst += bpp; \ | |
239 } \ | |
240 } while(0) | |
241 | |
242 | |
243 /* | |
244 * Special case: 50% alpha (alpha=128) | |
245 * This is treated specially because it can be optimized very well, and | |
246 * since it is good for many cases of semi-translucency. | |
247 * The theory is to do all three components at the same time: | |
248 * First zero the lowest bit of each component, which gives us room to | |
249 * add them. Then shift right and add the sum of the lowest bits. | |
250 */ | |
251 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \ | |
252 do { \ | |
253 int i; \ | |
254 Uint32 *src = (Uint32 *)(from); \ | |
255 Uint32 *dst = (Uint32 *)(to); \ | |
256 for(i = 0; i < (int)(length); i++) { \ | |
257 Uint32 s = *src++; \ | |
258 Uint32 d = *dst; \ | |
259 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \ | |
260 + (s & d & 0x00010101); \ | |
261 } \ | |
262 } while(0) | |
263 | |
264 /* | |
265 * For 16bpp, we can actually blend two pixels in parallel, if we take | |
266 * care to shift before we add, not after. | |
267 */ | |
268 | |
269 /* helper: blend a single 16 bit pixel at 50% */ | |
270 #define BLEND16_50(dst, src, mask) \ | |
271 do { \ | |
272 Uint32 s = *src++; \ | |
273 Uint32 d = *dst; \ | |
274 *dst++ = (((s & mask) + (d & mask)) >> 1) \ | |
275 + (s & d & (~mask & 0xffff)); \ | |
276 } while(0) | |
277 | |
278 /* basic 16bpp blender. mask is the pixels to keep when adding. */ | |
279 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \ | |
280 do { \ | |
281 unsigned n = (length); \ | |
282 Uint16 *src = (Uint16 *)(from); \ | |
283 Uint16 *dst = (Uint16 *)(to); \ | |
284 if(((unsigned long)src ^ (unsigned long)dst) & 3) { \ | |
285 /* source and destination not in phase, blit one by one */ \ | |
286 while(n--) \ | |
287 BLEND16_50(dst, src, mask); \ | |
288 } else { \ | |
289 if((unsigned long)src & 3) { \ | |
290 /* first odd pixel */ \ | |
291 BLEND16_50(dst, src, mask); \ | |
292 n--; \ | |
293 } \ | |
294 for(; n > 1; n -= 2) { \ | |
295 Uint32 s = *(Uint32 *)src; \ | |
296 Uint32 d = *(Uint32 *)dst; \ | |
297 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \ | |
298 + ((d & (mask | mask << 16)) >> 1) \ | |
299 + (s & d & (~(mask | mask << 16))); \ | |
300 src += 2; \ | |
301 dst += 2; \ | |
302 } \ | |
303 if(n) \ | |
304 BLEND16_50(dst, src, mask); /* last odd pixel */ \ | |
305 } \ | |
306 } while(0) | |
307 | |
308 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \ | |
309 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de) | |
310 | |
311 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \ | |
312 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde) | |
313 | |
314 | |
315 #define CHOOSE_BLIT(blitter, alpha, fmt) \ | |
316 do { \ | |
317 if(alpha == 255) { \ | |
318 switch(fmt->BytesPerPixel) { \ | |
319 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \ | |
320 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \ | |
321 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \ | |
322 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \ | |
323 } \ | |
324 } else { \ | |
325 switch(fmt->BytesPerPixel) { \ | |
326 case 1: \ | |
327 /* No 8bpp alpha blitting */ \ | |
328 break; \ | |
329 \ | |
330 case 2: \ | |
331 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ | |
332 case 0xffff: \ | |
333 if(fmt->Gmask == 0x07e0 \ | |
334 || fmt->Rmask == 0x07e0 \ | |
335 || fmt->Bmask == 0x07e0) { \ | |
336 if(alpha == 128) \ | |
337 blitter(2, Uint8, ALPHA_BLIT16_565_50); \ | |
338 else { \ | |
339 alpha >>= 3; /* use 5 bit alpha */ \ | |
340 blitter(2, Uint8, ALPHA_BLIT16_565); \ | |
341 } \ | |
342 } else \ | |
343 goto general16; \ | |
344 break; \ | |
345 \ | |
346 case 0x7fff: \ | |
347 if(fmt->Gmask == 0x03e0 \ | |
348 || fmt->Rmask == 0x03e0 \ | |
349 || fmt->Bmask == 0x03e0) { \ | |
350 if(alpha == 128) \ | |
351 blitter(2, Uint8, ALPHA_BLIT16_555_50); \ | |
352 else { \ | |
353 alpha >>= 3; /* use 5 bit alpha */ \ | |
354 blitter(2, Uint8, ALPHA_BLIT16_555); \ | |
355 } \ | |
356 break; \ | |
357 } \ | |
358 /* fallthrough */ \ | |
359 \ | |
360 default: \ | |
361 general16: \ | |
362 blitter(2, Uint8, ALPHA_BLIT_ANY); \ | |
363 } \ | |
364 break; \ | |
365 \ | |
366 case 3: \ | |
367 blitter(3, Uint8, ALPHA_BLIT_ANY); \ | |
368 break; \ | |
369 \ | |
370 case 4: \ | |
371 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \ | |
372 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \ | |
373 || fmt->Bmask == 0xff00)) { \ | |
374 if(alpha == 128) \ | |
375 blitter(4, Uint16, ALPHA_BLIT32_888_50); \ | |
376 else \ | |
377 blitter(4, Uint16, ALPHA_BLIT32_888); \ | |
378 } else \ | |
379 blitter(4, Uint16, ALPHA_BLIT_ANY); \ | |
380 break; \ | |
381 } \ | |
382 } \ | |
383 } while(0) | |
384 | |
385 | |
386 /* | |
387 * This takes care of the case when the surface is clipped on the left and/or | |
388 * right. Top clipping has already been taken care of. | |
389 */ | |
390 static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, | |
391 Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha) | |
392 { | |
393 SDL_PixelFormat *fmt = dst->format; | |
394 | |
395 #define RLECLIPBLIT(bpp, Type, do_blit) \ | |
396 do { \ | |
397 int linecount = srcrect->h; \ | |
398 int ofs = 0; \ | |
399 int left = srcrect->x; \ | |
400 int right = left + srcrect->w; \ | |
401 dstbuf -= left * bpp; \ | |
402 for(;;) { \ | |
403 int run; \ | |
404 ofs += *(Type *)srcbuf; \ | |
405 run = ((Type *)srcbuf)[1]; \ | |
406 srcbuf += 2 * sizeof(Type); \ | |
407 if(run) { \ | |
408 /* clip to left and right borders */ \ | |
409 if(ofs < right) { \ | |
410 int start = 0; \ | |
411 int len = run; \ | |
412 int startcol; \ | |
413 if(left - ofs > 0) { \ | |
414 start = left - ofs; \ | |
415 len -= start; \ | |
416 if(len <= 0) \ | |
417 goto nocopy ## bpp ## do_blit; \ | |
418 } \ | |
419 startcol = ofs + start; \ | |
420 if(len > right - startcol) \ | |
421 len = right - startcol; \ | |
422 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \ | |
423 len, bpp, alpha); \ | |
424 } \ | |
425 nocopy ## bpp ## do_blit: \ | |
426 srcbuf += run * bpp; \ | |
427 ofs += run; \ | |
428 } else if(!ofs) \ | |
429 break; \ | |
430 if(ofs == w) { \ | |
431 ofs = 0; \ | |
432 dstbuf += dst->pitch; \ | |
433 if(!--linecount) \ | |
434 break; \ | |
435 } \ | |
436 } \ | |
437 } while(0) | |
438 | |
439 CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt); | |
440 | |
441 #undef RLECLIPBLIT | |
442 | |
443 } | |
444 | |
445 | |
446 /* blit a colorkeyed RLE surface */ | |
447 int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect, | |
448 SDL_Surface *dst, SDL_Rect *dstrect) | |
449 { | |
450 Uint8 *dstbuf; | |
451 Uint8 *srcbuf; | |
452 int x, y; | |
453 int w = src->w; | |
454 unsigned alpha; | |
455 | |
456 /* Lock the destination if necessary */ | |
457 if ( dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) { | |
458 SDL_VideoDevice *video = current_video; | |
459 SDL_VideoDevice *this = current_video; | |
460 if ( video->LockHWSurface(this, dst) < 0 ) { | |
461 return(-1); | |
462 } | |
463 } | |
464 | |
465 /* Set up the source and destination pointers */ | |
466 x = dstrect->x; | |
467 y = dstrect->y; | |
468 dstbuf = (Uint8 *)dst->pixels + dst->offset | |
469 + y * dst->pitch + x * src->format->BytesPerPixel; | |
470 srcbuf = (Uint8 *)src->map->sw_data->aux_data; | |
471 | |
472 { | |
473 /* skip lines at the top if neccessary */ | |
474 int vskip = srcrect->y; | |
475 int ofs = 0; | |
476 if(vskip) { | |
477 | |
478 #define RLESKIP(bpp, Type) \ | |
479 for(;;) { \ | |
480 int run; \ | |
481 ofs += *(Type *)srcbuf; \ | |
482 run = ((Type *)srcbuf)[1]; \ | |
483 srcbuf += sizeof(Type) * 2; \ | |
484 if(run) { \ | |
485 srcbuf += run * bpp; \ | |
486 ofs += run; \ | |
487 } else if(!ofs) \ | |
488 goto done; \ | |
489 if(ofs == w) { \ | |
490 ofs = 0; \ | |
491 if(!--vskip) \ | |
492 break; \ | |
493 } \ | |
494 } | |
495 | |
496 switch(src->format->BytesPerPixel) { | |
497 case 1: RLESKIP(1, Uint8); break; | |
498 case 2: RLESKIP(2, Uint8); break; | |
499 case 3: RLESKIP(3, Uint8); break; | |
500 case 4: RLESKIP(4, Uint16); break; | |
501 } | |
502 | |
503 #undef RLESKIP | |
504 | |
505 } | |
506 } | |
507 | |
508 alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA | |
509 ? src->format->alpha : 255; | |
510 /* if left or right edge clipping needed, call clip blit */ | |
511 if ( srcrect->x || srcrect->w != src->w ) { | |
512 RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha); | |
513 } else { | |
514 SDL_PixelFormat *fmt = src->format; | |
515 | |
516 #define RLEBLIT(bpp, Type, do_blit) \ | |
517 do { \ | |
518 int linecount = srcrect->h; \ | |
519 int ofs = 0; \ | |
520 for(;;) { \ | |
521 unsigned run; \ | |
522 ofs += *(Type *)srcbuf; \ | |
523 run = ((Type *)srcbuf)[1]; \ | |
524 srcbuf += 2 * sizeof(Type); \ | |
525 if(run) { \ | |
526 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \ | |
527 srcbuf += run * bpp; \ | |
528 ofs += run; \ | |
529 } else if(!ofs) \ | |
530 break; \ | |
531 if(ofs == w) { \ | |
532 ofs = 0; \ | |
533 dstbuf += dst->pitch; \ | |
534 if(!--linecount) \ | |
535 break; \ | |
536 } \ | |
537 } \ | |
538 } while(0) | |
539 | |
540 CHOOSE_BLIT(RLEBLIT, alpha, fmt); | |
541 | |
542 #undef RLEBLIT | |
543 } | |
544 | |
545 done: | |
546 /* Unlock the destination if necessary */ | |
547 if ( dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) { | |
548 SDL_VideoDevice *video = current_video; | |
549 SDL_VideoDevice *this = current_video; | |
550 video->UnlockHWSurface(this, dst); | |
551 } | |
552 return(0); | |
553 } | |
554 | |
555 #undef OPAQUE_BLIT | |
556 | |
557 /* | |
558 * Per-pixel blitting macros for translucent pixels: | |
559 * These use the same techniques as the per-surface blitting macros | |
560 */ | |
561 | |
562 /* | |
563 * For 32bpp pixels, we have made sure the alpha is stored in the top | |
564 * 8 bits, so proceed as usual | |
565 */ | |
566 #define BLIT_TRANSL_888(src, dst) \ | |
567 do { \ | |
568 Uint32 s = src; \ | |
569 Uint32 d = dst; \ | |
570 unsigned alpha = s >> 24; \ | |
571 Uint32 s1 = s & 0xff00ff; \ | |
572 Uint32 d1 = d & 0xff00ff; \ | |
573 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ | |
574 s &= 0xff00; \ | |
575 d &= 0xff00; \ | |
576 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ | |
577 dst = d1 | d; \ | |
578 } while(0) | |
579 | |
580 /* | |
581 * For 16bpp pixels, we have stored the 5 most significant alpha bits in | |
582 * bits 5-10. As before, we can process all 3 RGB components at the same time. | |
583 */ | |
584 #define BLIT_TRANSL_565(src, dst) \ | |
585 do { \ | |
586 Uint32 s = src; \ | |
587 Uint32 d = dst; \ | |
588 unsigned alpha = (s & 0x3e0) >> 5; \ | |
589 s &= 0x07e0f81f; \ | |
590 d = (d | d << 16) & 0x07e0f81f; \ | |
591 d += (s - d) * alpha >> 5; \ | |
592 d &= 0x07e0f81f; \ | |
593 dst = d | d >> 16; \ | |
594 } while(0) | |
595 | |
596 #define BLIT_TRANSL_555(src, dst) \ | |
597 do { \ | |
598 Uint32 s = src; \ | |
599 Uint32 d = dst; \ | |
600 unsigned alpha = (s & 0x3e0) >> 5; \ | |
601 s &= 0x03e07c1f; \ | |
602 d = (d | d << 16) & 0x03e07c1f; \ | |
603 d += (s - d) * alpha >> 5; \ | |
604 d &= 0x03e07c1f; \ | |
605 dst = d | d >> 16; \ | |
606 } while(0) | |
607 | |
608 /* used to save the destination format in the encoding. Designed to be | |
609 macro-compatible with SDL_PixelFormat but without the unneeded fields */ | |
610 typedef struct { | |
611 Uint8 BytesPerPixel; | |
612 Uint8 Rloss; | |
613 Uint8 Gloss; | |
614 Uint8 Bloss; | |
615 Uint8 Rshift; | |
616 Uint8 Gshift; | |
617 Uint8 Bshift; | |
618 Uint8 Ashift; | |
619 Uint32 Rmask; | |
620 Uint32 Gmask; | |
621 Uint32 Bmask; | |
622 Uint32 Amask; | |
623 } RLEDestFormat; | |
624 | |
625 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */ | |
626 static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, | |
627 Uint8 *dstbuf, SDL_Rect *srcrect) | |
628 { | |
629 SDL_PixelFormat *df = dst->format; | |
630 /* | |
631 * clipped blitter: Ptype is the destination pixel type, | |
632 * Ctype the translucent count type, and do_blend the macro | |
633 * to blend one pixel. | |
634 */ | |
635 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \ | |
636 do { \ | |
637 int linecount = srcrect->h; \ | |
638 int left = srcrect->x; \ | |
639 int right = left + srcrect->w; \ | |
640 dstbuf -= left * sizeof(Ptype); \ | |
641 do { \ | |
642 int ofs = 0; \ | |
643 /* blit opaque pixels on one line */ \ | |
644 do { \ | |
645 unsigned run; \ | |
646 ofs += ((Ctype *)srcbuf)[0]; \ | |
647 run = ((Ctype *)srcbuf)[1]; \ | |
648 srcbuf += 2 * sizeof(Ctype); \ | |
649 if(run) { \ | |
650 /* clip to left and right borders */ \ | |
651 int cofs = ofs; \ | |
652 int crun = run; \ | |
653 if(left - cofs > 0) { \ | |
654 crun -= left - cofs; \ | |
655 cofs = left; \ | |
656 } \ | |
657 if(crun > right - cofs) \ | |
658 crun = right - cofs; \ | |
659 if(crun > 0) \ | |
660 SDL_memcpy(dstbuf + cofs * sizeof(Ptype), \ | |
661 srcbuf + (cofs - ofs) * sizeof(Ptype), \ | |
662 (unsigned)crun * sizeof(Ptype)); \ | |
663 srcbuf += run * sizeof(Ptype); \ | |
664 ofs += run; \ | |
665 } else if(!ofs) \ | |
666 return; \ | |
667 } while(ofs < w); \ | |
668 /* skip padding if necessary */ \ | |
669 if(sizeof(Ptype) == 2) \ | |
670 srcbuf += (unsigned long)srcbuf & 2; \ | |
671 /* blit translucent pixels on the same line */ \ | |
672 ofs = 0; \ | |
673 do { \ | |
674 unsigned run; \ | |
675 ofs += ((Uint16 *)srcbuf)[0]; \ | |
676 run = ((Uint16 *)srcbuf)[1]; \ | |
677 srcbuf += 4; \ | |
678 if(run) { \ | |
679 /* clip to left and right borders */ \ | |
680 int cofs = ofs; \ | |
681 int crun = run; \ | |
682 if(left - cofs > 0) { \ | |
683 crun -= left - cofs; \ | |
684 cofs = left; \ | |
685 } \ | |
686 if(crun > right - cofs) \ | |
687 crun = right - cofs; \ | |
688 if(crun > 0) { \ | |
689 Ptype *dst = (Ptype *)dstbuf + cofs; \ | |
690 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \ | |
691 int i; \ | |
692 for(i = 0; i < crun; i++) \ | |
693 do_blend(src[i], dst[i]); \ | |
694 } \ | |
695 srcbuf += run * 4; \ | |
696 ofs += run; \ | |
697 } \ | |
698 } while(ofs < w); \ | |
699 dstbuf += dst->pitch; \ | |
700 } while(--linecount); \ | |
701 } while(0) | |
702 | |
703 switch(df->BytesPerPixel) { | |
704 case 2: | |
705 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 | |
706 || df->Bmask == 0x07e0) | |
707 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565); | |
708 else | |
709 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555); | |
710 break; | |
711 case 4: | |
712 RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888); | |
713 break; | |
714 } | |
715 } | |
716 | |
717 /* blit a pixel-alpha RLE surface */ | |
718 int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect, | |
719 SDL_Surface *dst, SDL_Rect *dstrect) | |
720 { | |
721 int x, y; | |
722 int w = src->w; | |
723 Uint8 *srcbuf, *dstbuf; | |
724 SDL_PixelFormat *df = dst->format; | |
725 | |
726 /* Lock the destination if necessary */ | |
727 if(dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT)) { | |
728 SDL_VideoDevice *video = current_video; | |
729 SDL_VideoDevice *this = current_video; | |
730 if(video->LockHWSurface(this, dst) < 0) { | |
731 return -1; | |
732 } | |
733 } | |
734 | |
735 x = dstrect->x; | |
736 y = dstrect->y; | |
737 dstbuf = (Uint8 *)dst->pixels + dst->offset | |
738 + y * dst->pitch + x * df->BytesPerPixel; | |
739 srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat); | |
740 | |
741 { | |
742 /* skip lines at the top if necessary */ | |
743 int vskip = srcrect->y; | |
744 if(vskip) { | |
745 int ofs; | |
746 if(df->BytesPerPixel == 2) { | |
747 /* the 16/32 interleaved format */ | |
748 do { | |
749 /* skip opaque line */ | |
750 ofs = 0; | |
751 do { | |
752 int run; | |
753 ofs += srcbuf[0]; | |
754 run = srcbuf[1]; | |
755 srcbuf += 2; | |
756 if(run) { | |
757 srcbuf += 2 * run; | |
758 ofs += run; | |
759 } else if(!ofs) | |
760 goto done; | |
761 } while(ofs < w); | |
762 | |
763 /* skip padding */ | |
764 srcbuf += (unsigned long)srcbuf & 2; | |
765 | |
766 /* skip translucent line */ | |
767 ofs = 0; | |
768 do { | |
769 int run; | |
770 ofs += ((Uint16 *)srcbuf)[0]; | |
771 run = ((Uint16 *)srcbuf)[1]; | |
772 srcbuf += 4 * (run + 1); | |
773 ofs += run; | |
774 } while(ofs < w); | |
775 } while(--vskip); | |
776 } else { | |
777 /* the 32/32 interleaved format */ | |
778 vskip <<= 1; /* opaque and translucent have same format */ | |
779 do { | |
780 ofs = 0; | |
781 do { | |
782 int run; | |
783 ofs += ((Uint16 *)srcbuf)[0]; | |
784 run = ((Uint16 *)srcbuf)[1]; | |
785 srcbuf += 4; | |
786 if(run) { | |
787 srcbuf += 4 * run; | |
788 ofs += run; | |
789 } else if(!ofs) | |
790 goto done; | |
791 } while(ofs < w); | |
792 } while(--vskip); | |
793 } | |
794 } | |
795 } | |
796 | |
797 /* if left or right edge clipping needed, call clip blit */ | |
798 if(srcrect->x || srcrect->w != src->w) { | |
799 RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect); | |
800 } else { | |
801 | |
802 /* | |
803 * non-clipped blitter. Ptype is the destination pixel type, | |
804 * Ctype the translucent count type, and do_blend the | |
805 * macro to blend one pixel. | |
806 */ | |
807 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \ | |
808 do { \ | |
809 int linecount = srcrect->h; \ | |
810 do { \ | |
811 int ofs = 0; \ | |
812 /* blit opaque pixels on one line */ \ | |
813 do { \ | |
814 unsigned run; \ | |
815 ofs += ((Ctype *)srcbuf)[0]; \ | |
816 run = ((Ctype *)srcbuf)[1]; \ | |
817 srcbuf += 2 * sizeof(Ctype); \ | |
818 if(run) { \ | |
819 SDL_memcpy(dstbuf + ofs * sizeof(Ptype), srcbuf, \ | |
820 run * sizeof(Ptype)); \ | |
821 srcbuf += run * sizeof(Ptype); \ | |
822 ofs += run; \ | |
823 } else if(!ofs) \ | |
824 goto done; \ | |
825 } while(ofs < w); \ | |
826 /* skip padding if necessary */ \ | |
827 if(sizeof(Ptype) == 2) \ | |
828 srcbuf += (unsigned long)srcbuf & 2; \ | |
829 /* blit translucent pixels on the same line */ \ | |
830 ofs = 0; \ | |
831 do { \ | |
832 unsigned run; \ | |
833 ofs += ((Uint16 *)srcbuf)[0]; \ | |
834 run = ((Uint16 *)srcbuf)[1]; \ | |
835 srcbuf += 4; \ | |
836 if(run) { \ | |
837 Ptype *dst = (Ptype *)dstbuf + ofs; \ | |
838 unsigned i; \ | |
839 for(i = 0; i < run; i++) { \ | |
840 Uint32 src = *(Uint32 *)srcbuf; \ | |
841 do_blend(src, *dst); \ | |
842 srcbuf += 4; \ | |
843 dst++; \ | |
844 } \ | |
845 ofs += run; \ | |
846 } \ | |
847 } while(ofs < w); \ | |
848 dstbuf += dst->pitch; \ | |
849 } while(--linecount); \ | |
850 } while(0) | |
851 | |
852 switch(df->BytesPerPixel) { | |
853 case 2: | |
854 if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 | |
855 || df->Bmask == 0x07e0) | |
856 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565); | |
857 else | |
858 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555); | |
859 break; | |
860 case 4: | |
861 RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888); | |
862 break; | |
863 } | |
864 } | |
865 | |
866 done: | |
867 /* Unlock the destination if necessary */ | |
868 if(dst->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT)) { | |
869 SDL_VideoDevice *video = current_video; | |
870 SDL_VideoDevice *this = current_video; | |
871 video->UnlockHWSurface(this, dst); | |
872 } | |
873 return 0; | |
874 } | |
875 | |
876 /* | |
877 * Auxiliary functions: | |
878 * The encoding functions take 32bpp rgb + a, and | |
879 * return the number of bytes copied to the destination. | |
880 * The decoding functions copy to 32bpp rgb + a, and | |
881 * return the number of bytes copied from the source. | |
882 * These are only used in the encoder and un-RLE code and are therefore not | |
883 * highly optimised. | |
884 */ | |
885 | |
886 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */ | |
887 static int copy_opaque_16(void *dst, Uint32 *src, int n, | |
888 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) | |
889 { | |
890 int i; | |
891 Uint16 *d = dst; | |
892 for(i = 0; i < n; i++) { | |
893 unsigned r, g, b; | |
894 RGB_FROM_PIXEL(*src, sfmt, r, g, b); | |
895 PIXEL_FROM_RGB(*d, dfmt, r, g, b); | |
896 src++; | |
897 d++; | |
898 } | |
899 return n * 2; | |
900 } | |
901 | |
902 /* decode opaque pixels from 16bpp to 32bpp rgb + a */ | |
903 static int uncopy_opaque_16(Uint32 *dst, void *src, int n, | |
904 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) | |
905 { | |
906 int i; | |
907 Uint16 *s = src; | |
908 unsigned alpha = dfmt->Amask ? 255 : 0; | |
909 for(i = 0; i < n; i++) { | |
910 unsigned r, g, b; | |
911 RGB_FROM_PIXEL(*s, sfmt, r, g, b); | |
912 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha); | |
913 s++; | |
914 dst++; | |
915 } | |
916 return n * 2; | |
917 } | |
918 | |
919 | |
920 | |
921 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */ | |
922 static int copy_transl_565(void *dst, Uint32 *src, int n, | |
923 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) | |
924 { | |
925 int i; | |
926 Uint32 *d = dst; | |
927 for(i = 0; i < n; i++) { | |
928 unsigned r, g, b, a; | |
929 Uint16 pix; | |
930 RGBA_FROM_8888(*src, sfmt, r, g, b, a); | |
931 PIXEL_FROM_RGB(pix, dfmt, r, g, b); | |
932 *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0); | |
933 src++; | |
934 d++; | |
935 } | |
936 return n * 4; | |
937 } | |
938 | |
939 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */ | |
940 static int copy_transl_555(void *dst, Uint32 *src, int n, | |
941 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) | |
942 { | |
943 int i; | |
944 Uint32 *d = dst; | |
945 for(i = 0; i < n; i++) { | |
946 unsigned r, g, b, a; | |
947 Uint16 pix; | |
948 RGBA_FROM_8888(*src, sfmt, r, g, b, a); | |
949 PIXEL_FROM_RGB(pix, dfmt, r, g, b); | |
950 *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0); | |
951 src++; | |
952 d++; | |
953 } | |
954 return n * 4; | |
955 } | |
956 | |
957 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */ | |
958 static int uncopy_transl_16(Uint32 *dst, void *src, int n, | |
959 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) | |
960 { | |
961 int i; | |
962 Uint32 *s = src; | |
963 for(i = 0; i < n; i++) { | |
964 unsigned r, g, b, a; | |
965 Uint32 pix = *s++; | |
966 a = (pix & 0x3e0) >> 2; | |
967 pix = (pix & ~0x3e0) | pix >> 16; | |
968 RGB_FROM_PIXEL(pix, sfmt, r, g, b); | |
969 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); | |
970 dst++; | |
971 } | |
972 return n * 4; | |
973 } | |
974 | |
975 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ | |
976 static int copy_32(void *dst, Uint32 *src, int n, | |
977 SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) | |
978 { | |
979 int i; | |
980 Uint32 *d = dst; | |
981 for(i = 0; i < n; i++) { | |
982 unsigned r, g, b, a; | |
983 Uint32 pixel; | |
984 RGBA_FROM_8888(*src, sfmt, r, g, b, a); | |
985 PIXEL_FROM_RGB(pixel, dfmt, r, g, b); | |
986 *d++ = pixel | a << 24; | |
987 src++; | |
988 } | |
989 return n * 4; | |
990 } | |
991 | |
992 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ | |
993 static int uncopy_32(Uint32 *dst, void *src, int n, | |
994 RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) | |
995 { | |
996 int i; | |
997 Uint32 *s = src; | |
998 for(i = 0; i < n; i++) { | |
999 unsigned r, g, b, a; | |
1000 Uint32 pixel = *s++; | |
1001 RGB_FROM_PIXEL(pixel, sfmt, r, g, b); | |
1002 a = pixel >> 24; | |
1003 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); | |
1004 dst++; | |
1005 } | |
1006 return n * 4; | |
1007 } | |
1008 | |
1009 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255) | |
1010 | |
1011 #define ISTRANSL(pixel, fmt) \ | |
1012 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U) | |
1013 | |
1014 /* convert surface to be quickly alpha-blittable onto dest, if possible */ | |
1015 static int RLEAlphaSurface(SDL_Surface *surface) | |
1016 { | |
1017 SDL_Surface *dest; | |
1018 SDL_PixelFormat *df; | |
1019 int maxsize = 0; | |
1020 int max_opaque_run; | |
1021 int max_transl_run = 65535; | |
1022 unsigned masksum; | |
1023 Uint8 *rlebuf, *dst; | |
1024 int (*copy_opaque)(void *, Uint32 *, int, | |
1025 SDL_PixelFormat *, SDL_PixelFormat *); | |
1026 int (*copy_transl)(void *, Uint32 *, int, | |
1027 SDL_PixelFormat *, SDL_PixelFormat *); | |
1028 | |
1029 dest = surface->map->dst; | |
1030 if(!dest) | |
1031 return -1; | |
1032 df = dest->format; | |
1033 if(surface->format->BitsPerPixel != 32) | |
1034 return -1; /* only 32bpp source supported */ | |
1035 | |
1036 /* find out whether the destination is one we support, | |
1037 and determine the max size of the encoded result */ | |
1038 masksum = df->Rmask | df->Gmask | df->Bmask; | |
1039 switch(df->BytesPerPixel) { | |
1040 case 2: | |
1041 /* 16bpp: only support 565 and 555 formats */ | |
1042 switch(masksum) { | |
1043 case 0xffff: | |
1044 if(df->Gmask == 0x07e0 | |
1045 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { | |
1046 copy_opaque = copy_opaque_16; | |
1047 copy_transl = copy_transl_565; | |
1048 } else | |
1049 return -1; | |
1050 break; | |
1051 case 0x7fff: | |
1052 if(df->Gmask == 0x03e0 | |
1053 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) { | |
1054 copy_opaque = copy_opaque_16; | |
1055 copy_transl = copy_transl_555; | |
1056 } else | |
1057 return -1; | |
1058 break; | |
1059 default: | |
1060 return -1; | |
1061 } | |
1062 max_opaque_run = 255; /* runs stored as bytes */ | |
1063 | |
1064 /* worst case is alternating opaque and translucent pixels, | |
1065 with room for alignment padding between lines */ | |
1066 maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2; | |
1067 break; | |
1068 case 4: | |
1069 if(masksum != 0x00ffffff) | |
1070 return -1; /* requires unused high byte */ | |
1071 copy_opaque = copy_32; | |
1072 copy_transl = copy_32; | |
1073 max_opaque_run = 255; /* runs stored as short ints */ | |
1074 | |
1075 /* worst case is alternating opaque and translucent pixels */ | |
1076 maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4; | |
1077 break; | |
1078 default: | |
1079 return -1; /* anything else unsupported right now */ | |
1080 } | |
1081 | |
1082 maxsize += sizeof(RLEDestFormat); | |
1083 rlebuf = (Uint8 *)malloc(maxsize); | |
1084 if(!rlebuf) { | |
1085 SDL_OutOfMemory(); | |
1086 return -1; | |
1087 } | |
1088 { | |
1089 /* save the destination format so we can undo the encoding later */ | |
1090 RLEDestFormat *r = (RLEDestFormat *)rlebuf; | |
1091 r->BytesPerPixel = df->BytesPerPixel; | |
1092 r->Rloss = df->Rloss; | |
1093 r->Gloss = df->Gloss; | |
1094 r->Bloss = df->Bloss; | |
1095 r->Rshift = df->Rshift; | |
1096 r->Gshift = df->Gshift; | |
1097 r->Bshift = df->Bshift; | |
1098 r->Ashift = df->Ashift; | |
1099 r->Rmask = df->Rmask; | |
1100 r->Gmask = df->Gmask; | |
1101 r->Bmask = df->Bmask; | |
1102 r->Amask = df->Amask; | |
1103 } | |
1104 dst = rlebuf + sizeof(RLEDestFormat); | |
1105 | |
1106 /* Do the actual encoding */ | |
1107 { | |
1108 int x, y; | |
1109 int h = surface->h, w = surface->w; | |
1110 SDL_PixelFormat *sf = surface->format; | |
1111 Uint32 *src = (Uint32 *)((Uint8 *)surface->pixels + surface->offset); | |
1112 Uint8 *lastline = dst; /* end of last non-blank line */ | |
1113 | |
1114 /* opaque counts are 8 or 16 bits, depending on target depth */ | |
1115 #define ADD_OPAQUE_COUNTS(n, m) \ | |
1116 if(df->BytesPerPixel == 4) { \ | |
1117 ((Uint16 *)dst)[0] = n; \ | |
1118 ((Uint16 *)dst)[1] = m; \ | |
1119 dst += 4; \ | |
1120 } else { \ | |
1121 dst[0] = n; \ | |
1122 dst[1] = m; \ | |
1123 dst += 2; \ | |
1124 } | |
1125 | |
1126 /* translucent counts are always 16 bit */ | |
1127 #define ADD_TRANSL_COUNTS(n, m) \ | |
1128 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4) | |
1129 | |
1130 for(y = 0; y < h; y++) { | |
1131 int runstart, skipstart; | |
1132 int blankline = 0; | |
1133 /* First encode all opaque pixels of a scan line */ | |
1134 x = 0; | |
1135 do { | |
1136 int run, skip, len; | |
1137 skipstart = x; | |
1138 while(x < w && !ISOPAQUE(src[x], sf)) | |
1139 x++; | |
1140 runstart = x; | |
1141 while(x < w && ISOPAQUE(src[x], sf)) | |
1142 x++; | |
1143 skip = runstart - skipstart; | |
1144 if(skip == w) | |
1145 blankline = 1; | |
1146 run = x - runstart; | |
1147 while(skip > max_opaque_run) { | |
1148 ADD_OPAQUE_COUNTS(max_opaque_run, 0); | |
1149 skip -= max_opaque_run; | |
1150 } | |
1151 len = MIN(run, max_opaque_run); | |
1152 ADD_OPAQUE_COUNTS(skip, len); | |
1153 dst += copy_opaque(dst, src + runstart, len, sf, df); | |
1154 runstart += len; | |
1155 run -= len; | |
1156 while(run) { | |
1157 len = MIN(run, max_opaque_run); | |
1158 ADD_OPAQUE_COUNTS(0, len); | |
1159 dst += copy_opaque(dst, src + runstart, len, sf, df); | |
1160 runstart += len; | |
1161 run -= len; | |
1162 } | |
1163 } while(x < w); | |
1164 | |
1165 /* Make sure the next output address is 32-bit aligned */ | |
1166 dst += (unsigned long)dst & 2; | |
1167 | |
1168 /* Next, encode all translucent pixels of the same scan line */ | |
1169 x = 0; | |
1170 do { | |
1171 int run, skip, len; | |
1172 skipstart = x; | |
1173 while(x < w && !ISTRANSL(src[x], sf)) | |
1174 x++; | |
1175 runstart = x; | |
1176 while(x < w && ISTRANSL(src[x], sf)) | |
1177 x++; | |
1178 skip = runstart - skipstart; | |
1179 blankline &= (skip == w); | |
1180 run = x - runstart; | |
1181 while(skip > max_transl_run) { | |
1182 ADD_TRANSL_COUNTS(max_transl_run, 0); | |
1183 skip -= max_transl_run; | |
1184 } | |
1185 len = MIN(run, max_transl_run); | |
1186 ADD_TRANSL_COUNTS(skip, len); | |
1187 dst += copy_transl(dst, src + runstart, len, sf, df); | |
1188 runstart += len; | |
1189 run -= len; | |
1190 while(run) { | |
1191 len = MIN(run, max_transl_run); | |
1192 ADD_TRANSL_COUNTS(0, len); | |
1193 dst += copy_transl(dst, src + runstart, len, sf, df); | |
1194 runstart += len; | |
1195 run -= len; | |
1196 } | |
1197 if(!blankline) | |
1198 lastline = dst; | |
1199 } while(x < w); | |
1200 | |
1201 src += surface->pitch >> 2; | |
1202 } | |
1203 dst = lastline; /* back up past trailing blank lines */ | |
1204 ADD_OPAQUE_COUNTS(0, 0); | |
1205 } | |
1206 | |
1207 #undef ADD_OPAQUE_COUNTS | |
1208 #undef ADD_TRANSL_COUNTS | |
1209 | |
1210 /* Now that we have it encoded, release the original pixels */ | |
1211 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC | |
1212 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { | |
1213 free( surface->pixels ); | |
1214 surface->pixels = NULL; | |
1215 } | |
1216 | |
1217 /* realloc the buffer to release unused memory */ | |
1218 { | |
1219 Uint8 *p = realloc(rlebuf, dst - rlebuf); | |
1220 if(!p) | |
1221 p = rlebuf; | |
1222 surface->map->sw_data->aux_data = p; | |
1223 } | |
1224 | |
1225 return 0; | |
1226 } | |
1227 | |
1228 static Uint32 getpix_8(Uint8 *srcbuf) | |
1229 { | |
1230 return *srcbuf; | |
1231 } | |
1232 | |
1233 static Uint32 getpix_16(Uint8 *srcbuf) | |
1234 { | |
1235 return *(Uint16 *)srcbuf; | |
1236 } | |
1237 | |
1238 static Uint32 getpix_24(Uint8 *srcbuf) | |
1239 { | |
1240 if(SDL_BYTEORDER == SDL_LIL_ENDIAN) | |
1241 return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16); | |
1242 else | |
1243 return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2]; | |
1244 } | |
1245 | |
1246 static Uint32 getpix_32(Uint8 *srcbuf) | |
1247 { | |
1248 return *(Uint32 *)srcbuf; | |
1249 } | |
1250 | |
1251 typedef Uint32 (*getpix_func)(Uint8 *); | |
1252 | |
1253 static getpix_func getpixes[4] = { | |
1254 getpix_8, getpix_16, getpix_24, getpix_32 | |
1255 }; | |
1256 | |
1257 static int RLEColorkeySurface(SDL_Surface *surface) | |
1258 { | |
1259 Uint8 *rlebuf, *dst; | |
1260 int maxn; | |
1261 int y; | |
1262 Uint8 *srcbuf, *curbuf, *lastline; | |
1263 int maxsize = 0; | |
1264 int skip, run; | |
1265 int bpp = surface->format->BytesPerPixel; | |
1266 getpix_func getpix; | |
1267 Uint32 ckey, rgbmask; | |
1268 int w, h; | |
1269 | |
1270 /* calculate the worst case size for the compressed surface */ | |
1271 switch(bpp) { | |
1272 case 1: | |
1273 /* worst case is alternating opaque and transparent pixels, | |
1274 starting with an opaque pixel */ | |
1275 maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2; | |
1276 break; | |
1277 case 2: | |
1278 case 3: | |
1279 /* worst case is solid runs, at most 255 pixels wide */ | |
1280 maxsize = surface->h * (2 * (surface->w / 255 + 1) | |
1281 + surface->w * bpp) + 2; | |
1282 break; | |
1283 case 4: | |
1284 /* worst case is solid runs, at most 65535 pixels wide */ | |
1285 maxsize = surface->h * (4 * (surface->w / 65535 + 1) | |
1286 + surface->w * 4) + 4; | |
1287 break; | |
1288 } | |
1289 | |
1290 rlebuf = (Uint8 *)malloc(maxsize); | |
1291 if ( rlebuf == NULL ) { | |
1292 SDL_OutOfMemory(); | |
1293 return(-1); | |
1294 } | |
1295 | |
1296 /* Set up the conversion */ | |
1297 srcbuf = (Uint8 *)surface->pixels+surface->offset; | |
1298 curbuf = srcbuf; | |
1299 maxn = bpp == 4 ? 65535 : 255; | |
1300 skip = run = 0; | |
1301 dst = rlebuf; | |
1302 rgbmask = ~surface->format->Amask; | |
1303 ckey = surface->format->colorkey & rgbmask; | |
1304 lastline = dst; | |
1305 getpix = getpixes[bpp - 1]; | |
1306 w = surface->w; | |
1307 h = surface->h; | |
1308 | |
1309 #define ADD_COUNTS(n, m) \ | |
1310 if(bpp == 4) { \ | |
1311 ((Uint16 *)dst)[0] = n; \ | |
1312 ((Uint16 *)dst)[1] = m; \ | |
1313 dst += 4; \ | |
1314 } else { \ | |
1315 dst[0] = n; \ | |
1316 dst[1] = m; \ | |
1317 dst += 2; \ | |
1318 } | |
1319 | |
1320 for(y = 0; y < h; y++) { | |
1321 int x = 0; | |
1322 int blankline = 0; | |
1323 do { | |
1324 int run, skip, len; | |
1325 int runstart; | |
1326 int skipstart = x; | |
1327 | |
1328 /* find run of transparent, then opaque pixels */ | |
1329 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey) | |
1330 x++; | |
1331 runstart = x; | |
1332 while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey) | |
1333 x++; | |
1334 skip = runstart - skipstart; | |
1335 if(skip == w) | |
1336 blankline = 1; | |
1337 run = x - runstart; | |
1338 | |
1339 /* encode segment */ | |
1340 while(skip > maxn) { | |
1341 ADD_COUNTS(maxn, 0); | |
1342 skip -= maxn; | |
1343 } | |
1344 len = MIN(run, maxn); | |
1345 ADD_COUNTS(skip, len); | |
1346 memcpy(dst, srcbuf + runstart * bpp, len * bpp); | |
1347 dst += len * bpp; | |
1348 run -= len; | |
1349 runstart += len; | |
1350 while(run) { | |
1351 len = MIN(run, maxn); | |
1352 ADD_COUNTS(0, len); | |
1353 memcpy(dst, srcbuf + runstart * bpp, len * bpp); | |
1354 dst += len * bpp; | |
1355 runstart += len; | |
1356 run -= len; | |
1357 } | |
1358 if(!blankline) | |
1359 lastline = dst; | |
1360 } while(x < w); | |
1361 | |
1362 srcbuf += surface->pitch; | |
1363 } | |
1364 dst = lastline; /* back up bast trailing blank lines */ | |
1365 ADD_COUNTS(0, 0); | |
1366 | |
1367 #undef ADD_COUNTS | |
1368 | |
1369 /* Now that we have it encoded, release the original pixels */ | |
1370 if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC | |
1371 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { | |
1372 free( surface->pixels ); | |
1373 surface->pixels = NULL; | |
1374 } | |
1375 | |
1376 /* realloc the buffer to release unused memory */ | |
1377 { | |
1378 /* If realloc returns NULL, the original block is left intact */ | |
1379 Uint8 *p = realloc(rlebuf, dst - rlebuf); | |
1380 if(!p) | |
1381 p = rlebuf; | |
1382 surface->map->sw_data->aux_data = p; | |
1383 } | |
1384 | |
1385 return(0); | |
1386 } | |
1387 | |
1388 int SDL_RLESurface(SDL_Surface *surface) | |
1389 { | |
1390 int retcode; | |
1391 | |
1392 /* Clear any previous RLE conversion */ | |
1393 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { | |
1394 SDL_UnRLESurface(surface, 1); | |
1395 } | |
1396 | |
1397 /* We don't support RLE encoding of bitmaps */ | |
1398 if ( surface->format->BitsPerPixel < 8 ) { | |
1399 return(-1); | |
1400 } | |
1401 | |
1402 /* Lock the surface if it's in hardware */ | |
1403 if ( surface->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) { | |
1404 SDL_VideoDevice *video = current_video; | |
1405 SDL_VideoDevice *this = current_video; | |
1406 if ( video->LockHWSurface(this, surface) < 0 ) { | |
1407 return(-1); | |
1408 } | |
1409 } | |
1410 | |
1411 /* Encode */ | |
1412 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { | |
1413 retcode = RLEColorkeySurface(surface); | |
1414 } else { | |
1415 if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA | |
1416 && surface->format->Amask != 0) | |
1417 retcode = RLEAlphaSurface(surface); | |
1418 else | |
1419 retcode = -1; /* no RLE for per-surface alpha sans ckey */ | |
1420 } | |
1421 | |
1422 /* Unlock the surface if it's in hardware */ | |
1423 if ( surface->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT) ) { | |
1424 SDL_VideoDevice *video = current_video; | |
1425 SDL_VideoDevice *this = current_video; | |
1426 video->UnlockHWSurface(this, surface); | |
1427 } | |
1428 | |
1429 if(retcode < 0) | |
1430 return -1; | |
1431 | |
1432 /* The surface is now accelerated */ | |
1433 surface->flags |= SDL_RLEACCEL; | |
1434 | |
1435 return(0); | |
1436 } | |
1437 | |
1438 /* | |
1439 * Un-RLE a surface with pixel alpha | |
1440 * This may not give back exactly the image before RLE-encoding; all | |
1441 * completely transparent pixels will be lost, and colour and alpha depth | |
1442 * may have been reduced (when encoding for 16bpp targets). | |
1443 */ | |
1444 static void UnRLEAlpha(SDL_Surface *surface) | |
1445 { | |
1446 Uint8 *srcbuf; | |
1447 Uint32 *dst; | |
1448 SDL_PixelFormat *sf = surface->format; | |
1449 RLEDestFormat *df = surface->map->sw_data->aux_data; | |
1450 int (*uncopy_opaque)(Uint32 *, void *, int, | |
1451 RLEDestFormat *, SDL_PixelFormat *); | |
1452 int (*uncopy_transl)(Uint32 *, void *, int, | |
1453 RLEDestFormat *, SDL_PixelFormat *); | |
1454 int w = surface->w; | |
1455 int bpp = df->BytesPerPixel; | |
1456 | |
1457 if(bpp == 2) { | |
1458 uncopy_opaque = uncopy_opaque_16; | |
1459 uncopy_transl = uncopy_transl_16; | |
1460 } else { | |
1461 uncopy_opaque = uncopy_transl = uncopy_32; | |
1462 } | |
1463 | |
1464 surface->pixels = malloc(surface->h * surface->pitch); | |
1465 /* fill background with transparent pixels */ | |
1466 memset(surface->pixels, 0, surface->h * surface->pitch); | |
1467 | |
1468 dst = surface->pixels; | |
1469 srcbuf = (Uint8 *)(df + 1); | |
1470 for(;;) { | |
1471 /* copy opaque pixels */ | |
1472 int ofs = 0; | |
1473 do { | |
1474 unsigned run; | |
1475 if(bpp == 2) { | |
1476 ofs += srcbuf[0]; | |
1477 run = srcbuf[1]; | |
1478 srcbuf += 2; | |
1479 } else { | |
1480 ofs += ((Uint16 *)srcbuf)[0]; | |
1481 run = ((Uint16 *)srcbuf)[1]; | |
1482 srcbuf += 4; | |
1483 } | |
1484 if(run) { | |
1485 srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf); | |
1486 ofs += run; | |
1487 } else if(!ofs) | |
1488 return; | |
1489 } while(ofs < w); | |
1490 | |
1491 /* skip padding if needed */ | |
1492 if(bpp == 2) | |
1493 srcbuf += (unsigned long)srcbuf & 2; | |
1494 | |
1495 /* copy translucent pixels */ | |
1496 ofs = 0; | |
1497 do { | |
1498 unsigned run; | |
1499 ofs += ((Uint16 *)srcbuf)[0]; | |
1500 run = ((Uint16 *)srcbuf)[1]; | |
1501 srcbuf += 4; | |
1502 if(run) { | |
1503 srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf); | |
1504 ofs += run; | |
1505 } | |
1506 } while(ofs < w); | |
1507 dst += surface->pitch >> 2; | |
1508 } | |
1509 } | |
1510 | |
1511 void SDL_UnRLESurface(SDL_Surface *surface, int recode) | |
1512 { | |
1513 if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { | |
1514 surface->flags &= ~SDL_RLEACCEL; | |
1515 | |
1516 if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC | |
1517 && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { | |
1518 if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { | |
1519 SDL_Rect full; | |
1520 unsigned alpha_flag; | |
1521 | |
1522 /* re-create the original surface */ | |
1523 surface->pixels = malloc(surface->h * surface->pitch); | |
1524 | |
1525 /* fill it with the background colour */ | |
1526 SDL_FillRect(surface, NULL, surface->format->colorkey); | |
1527 | |
1528 /* now render the encoded surface */ | |
1529 full.x = full.y = 0; | |
1530 full.w = surface->w; | |
1531 full.h = surface->h; | |
1532 alpha_flag = surface->flags & SDL_SRCALPHA; | |
1533 surface->flags &= ~SDL_SRCALPHA; /* opaque blit */ | |
1534 SDL_RLEBlit(surface, &full, surface, &full); | |
1535 surface->flags |= alpha_flag; | |
1536 } else | |
1537 UnRLEAlpha(surface); | |
1538 } | |
1539 | |
1540 if ( surface->map && surface->map->sw_data->aux_data ) { | |
1541 free(surface->map->sw_data->aux_data); | |
1542 surface->map->sw_data->aux_data = NULL; | |
1543 } | |
1544 } | |
1545 } | |
1546 | |
1547 |