Mercurial > sdl-ios-xcode
comparison src/libm/s_atan.c @ 4873:67ad1c88dda0
Added atan implementation from uClibc
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 29 Aug 2010 16:51:48 -0700 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
4872:231f8a1c5edd | 4873:67ad1c88dda0 |
---|---|
1 /* | |
2 * ==================================================== | |
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
4 * | |
5 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
6 * Permission to use, copy, modify, and distribute this | |
7 * software is freely granted, provided that this notice | |
8 * is preserved. | |
9 * ==================================================== | |
10 */ | |
11 | |
12 /* atan(x) | |
13 * Method | |
14 * 1. Reduce x to positive by atan(x) = -atan(-x). | |
15 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument | |
16 * is further reduced to one of the following intervals and the | |
17 * arctangent of t is evaluated by the corresponding formula: | |
18 * | |
19 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) | |
20 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) | |
21 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) | |
22 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) | |
23 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) | |
24 * | |
25 * Constants: | |
26 * The hexadecimal values are the intended ones for the following | |
27 * constants. The decimal values may be used, provided that the | |
28 * compiler will convert from decimal to binary accurately enough | |
29 * to produce the hexadecimal values shown. | |
30 */ | |
31 | |
32 #include "math.h" | |
33 #include "math_private.h" | |
34 | |
35 static const double atanhi[] = { | |
36 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ | |
37 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ | |
38 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ | |
39 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ | |
40 }; | |
41 | |
42 static const double atanlo[] = { | |
43 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ | |
44 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ | |
45 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ | |
46 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ | |
47 }; | |
48 | |
49 static const double aT[] = { | |
50 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ | |
51 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ | |
52 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ | |
53 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ | |
54 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ | |
55 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ | |
56 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ | |
57 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ | |
58 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ | |
59 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ | |
60 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ | |
61 }; | |
62 | |
63 static const double | |
64 one = 1.0, | |
65 huge = 1.0e300; | |
66 | |
67 double atan(double x) | |
68 { | |
69 double w,s1,s2,z; | |
70 int32_t ix,hx,id; | |
71 | |
72 GET_HIGH_WORD(hx,x); | |
73 ix = hx&0x7fffffff; | |
74 if(ix>=0x44100000) { /* if |x| >= 2^66 */ | |
75 u_int32_t low; | |
76 GET_LOW_WORD(low,x); | |
77 if(ix>0x7ff00000|| | |
78 (ix==0x7ff00000&&(low!=0))) | |
79 return x+x; /* NaN */ | |
80 if(hx>0) return atanhi[3]+atanlo[3]; | |
81 else return -atanhi[3]-atanlo[3]; | |
82 } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ | |
83 if (ix < 0x3e200000) { /* |x| < 2^-29 */ | |
84 if(huge+x>one) return x; /* raise inexact */ | |
85 } | |
86 id = -1; | |
87 } else { | |
88 x = fabs(x); | |
89 if (ix < 0x3ff30000) { /* |x| < 1.1875 */ | |
90 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ | |
91 id = 0; x = (2.0*x-one)/(2.0+x); | |
92 } else { /* 11/16<=|x|< 19/16 */ | |
93 id = 1; x = (x-one)/(x+one); | |
94 } | |
95 } else { | |
96 if (ix < 0x40038000) { /* |x| < 2.4375 */ | |
97 id = 2; x = (x-1.5)/(one+1.5*x); | |
98 } else { /* 2.4375 <= |x| < 2^66 */ | |
99 id = 3; x = -1.0/x; | |
100 } | |
101 }} | |
102 /* end of argument reduction */ | |
103 z = x*x; | |
104 w = z*z; | |
105 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ | |
106 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); | |
107 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); | |
108 if (id<0) return x - x*(s1+s2); | |
109 else { | |
110 z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); | |
111 return (hx<0)? -z:z; | |
112 } | |
113 } | |
114 libm_hidden_def(atan) |