Mercurial > sdl-ios-xcode
comparison src/video/e_sqrt.h @ 1330:450721ad5436
It's now possible to build SDL without any C runtime at all on Windows,
using Visual C++ 2005
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 06 Feb 2006 08:28:51 +0000 |
parents | |
children | 7f32b9bede06 |
comparison
equal
deleted
inserted
replaced
1329:bc67bbf87818 | 1330:450721ad5436 |
---|---|
1 /* @(#)e_sqrt.c 5.1 93/09/24 */ | |
2 /* | |
3 * ==================================================== | |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 * | |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 * Permission to use, copy, modify, and distribute this | |
8 * software is freely granted, provided that this notice | |
9 * is preserved. | |
10 * ==================================================== | |
11 */ | |
12 | |
13 #if defined(LIBM_SCCS) && !defined(lint) | |
14 static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $"; | |
15 #endif | |
16 | |
17 /* __ieee754_sqrt(x) | |
18 * Return correctly rounded sqrt. | |
19 * ------------------------------------------ | |
20 * | Use the hardware sqrt if you have one | | |
21 * ------------------------------------------ | |
22 * Method: | |
23 * Bit by bit method using integer arithmetic. (Slow, but portable) | |
24 * 1. Normalization | |
25 * Scale x to y in [1,4) with even powers of 2: | |
26 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then | |
27 * sqrt(x) = 2^k * sqrt(y) | |
28 * 2. Bit by bit computation | |
29 * Let q = sqrt(y) truncated to i bit after binary point (q = 1), | |
30 * i 0 | |
31 * i+1 2 | |
32 * s = 2*q , and y = 2 * ( y - q ). (1) | |
33 * i i i i | |
34 * | |
35 * To compute q from q , one checks whether | |
36 * i+1 i | |
37 * | |
38 * -(i+1) 2 | |
39 * (q + 2 ) <= y. (2) | |
40 * i | |
41 * -(i+1) | |
42 * If (2) is false, then q = q ; otherwise q = q + 2 . | |
43 * i+1 i i+1 i | |
44 * | |
45 * With some algebric manipulation, it is not difficult to see | |
46 * that (2) is equivalent to | |
47 * -(i+1) | |
48 * s + 2 <= y (3) | |
49 * i i | |
50 * | |
51 * The advantage of (3) is that s and y can be computed by | |
52 * i i | |
53 * the following recurrence formula: | |
54 * if (3) is false | |
55 * | |
56 * s = s , y = y ; (4) | |
57 * i+1 i i+1 i | |
58 * | |
59 * otherwise, | |
60 * -i -(i+1) | |
61 * s = s + 2 , y = y - s - 2 (5) | |
62 * i+1 i i+1 i i | |
63 * | |
64 * One may easily use induction to prove (4) and (5). | |
65 * Note. Since the left hand side of (3) contain only i+2 bits, | |
66 * it does not necessary to do a full (53-bit) comparison | |
67 * in (3). | |
68 * 3. Final rounding | |
69 * After generating the 53 bits result, we compute one more bit. | |
70 * Together with the remainder, we can decide whether the | |
71 * result is exact, bigger than 1/2ulp, or less than 1/2ulp | |
72 * (it will never equal to 1/2ulp). | |
73 * The rounding mode can be detected by checking whether | |
74 * huge + tiny is equal to huge, and whether huge - tiny is | |
75 * equal to huge for some floating point number "huge" and "tiny". | |
76 * | |
77 * Special cases: | |
78 * sqrt(+-0) = +-0 ... exact | |
79 * sqrt(inf) = inf | |
80 * sqrt(-ve) = NaN ... with invalid signal | |
81 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN | |
82 * | |
83 * Other methods : see the appended file at the end of the program below. | |
84 *--------------- | |
85 */ | |
86 | |
87 /*#include "math.h"*/ | |
88 #include "math_private.h" | |
89 | |
90 #ifdef __STDC__ | |
91 double copysign(double x, double y) | |
92 #else | |
93 double copysign(x,y) | |
94 double x,y; | |
95 #endif | |
96 { | |
97 u_int32_t hx,hy; | |
98 GET_HIGH_WORD(hx,x); | |
99 GET_HIGH_WORD(hy,y); | |
100 SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); | |
101 return x; | |
102 } | |
103 | |
104 #ifdef __STDC__ | |
105 double scalbn (double x, int n) | |
106 #else | |
107 double scalbn (x,n) | |
108 double x; int n; | |
109 #endif | |
110 { | |
111 int32_t k,hx,lx; | |
112 EXTRACT_WORDS(hx,lx,x); | |
113 k = (hx&0x7ff00000)>>20; /* extract exponent */ | |
114 if (k==0) { /* 0 or subnormal x */ | |
115 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ | |
116 x *= two54; | |
117 GET_HIGH_WORD(hx,x); | |
118 k = ((hx&0x7ff00000)>>20) - 54; | |
119 if (n< -50000) return tiny*x; /*underflow*/ | |
120 } | |
121 if (k==0x7ff) return x+x; /* NaN or Inf */ | |
122 k = k+n; | |
123 if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ | |
124 if (k > 0) /* normal result */ | |
125 {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;} | |
126 if (k <= -54) { | |
127 if (n > 50000) /* in case integer overflow in n+k */ | |
128 return huge*copysign(huge,x); /*overflow*/ | |
129 else return tiny*copysign(tiny,x); /*underflow*/ | |
130 } | |
131 k += 54; /* subnormal result */ | |
132 SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); | |
133 return x*twom54; | |
134 } | |
135 | |
136 #ifdef __STDC__ | |
137 double __ieee754_sqrt(double x) | |
138 #else | |
139 double __ieee754_sqrt(x) | |
140 double x; | |
141 #endif | |
142 { | |
143 double z; | |
144 int32_t sign = (int)0x80000000; | |
145 int32_t ix0,s0,q,m,t,i; | |
146 u_int32_t r,t1,s1,ix1,q1; | |
147 | |
148 EXTRACT_WORDS(ix0,ix1,x); | |
149 | |
150 /* take care of Inf and NaN */ | |
151 if((ix0&0x7ff00000)==0x7ff00000) { | |
152 return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf | |
153 sqrt(-inf)=sNaN */ | |
154 } | |
155 /* take care of zero */ | |
156 if(ix0<=0) { | |
157 if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ | |
158 else if(ix0<0) | |
159 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ | |
160 } | |
161 /* normalize x */ | |
162 m = (ix0>>20); | |
163 if(m==0) { /* subnormal x */ | |
164 while(ix0==0) { | |
165 m -= 21; | |
166 ix0 |= (ix1>>11); ix1 <<= 21; | |
167 } | |
168 for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; | |
169 m -= i-1; | |
170 ix0 |= (ix1>>(32-i)); | |
171 ix1 <<= i; | |
172 } | |
173 m -= 1023; /* unbias exponent */ | |
174 ix0 = (ix0&0x000fffff)|0x00100000; | |
175 if(m&1){ /* odd m, double x to make it even */ | |
176 ix0 += ix0 + ((ix1&sign)>>31); | |
177 ix1 += ix1; | |
178 } | |
179 m >>= 1; /* m = [m/2] */ | |
180 | |
181 /* generate sqrt(x) bit by bit */ | |
182 ix0 += ix0 + ((ix1&sign)>>31); | |
183 ix1 += ix1; | |
184 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ | |
185 r = 0x00200000; /* r = moving bit from right to left */ | |
186 | |
187 while(r!=0) { | |
188 t = s0+r; | |
189 if(t<=ix0) { | |
190 s0 = t+r; | |
191 ix0 -= t; | |
192 q += r; | |
193 } | |
194 ix0 += ix0 + ((ix1&sign)>>31); | |
195 ix1 += ix1; | |
196 r>>=1; | |
197 } | |
198 | |
199 r = sign; | |
200 while(r!=0) { | |
201 t1 = s1+r; | |
202 t = s0; | |
203 if((t<ix0)||((t==ix0)&&(t1<=ix1))) { | |
204 s1 = t1+r; | |
205 if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; | |
206 ix0 -= t; | |
207 if (ix1 < t1) ix0 -= 1; | |
208 ix1 -= t1; | |
209 q1 += r; | |
210 } | |
211 ix0 += ix0 + ((ix1&sign)>>31); | |
212 ix1 += ix1; | |
213 r>>=1; | |
214 } | |
215 | |
216 /* use floating add to find out rounding direction */ | |
217 if((ix0|ix1)!=0) { | |
218 z = one-tiny; /* trigger inexact flag */ | |
219 if (z>=one) { | |
220 z = one+tiny; | |
221 if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;} | |
222 else if (z>one) { | |
223 if (q1==(u_int32_t)0xfffffffe) q+=1; | |
224 q1+=2; | |
225 } else | |
226 q1 += (q1&1); | |
227 } | |
228 } | |
229 ix0 = (q>>1)+0x3fe00000; | |
230 ix1 = q1>>1; | |
231 if ((q&1)==1) ix1 |= sign; | |
232 ix0 += (m <<20); | |
233 INSERT_WORDS(z,ix0,ix1); | |
234 return z; | |
235 } | |
236 | |
237 /* | |
238 Other methods (use floating-point arithmetic) | |
239 ------------- | |
240 (This is a copy of a drafted paper by Prof W. Kahan | |
241 and K.C. Ng, written in May, 1986) | |
242 | |
243 Two algorithms are given here to implement sqrt(x) | |
244 (IEEE double precision arithmetic) in software. | |
245 Both supply sqrt(x) correctly rounded. The first algorithm (in | |
246 Section A) uses newton iterations and involves four divisions. | |
247 The second one uses reciproot iterations to avoid division, but | |
248 requires more multiplications. Both algorithms need the ability | |
249 to chop results of arithmetic operations instead of round them, | |
250 and the INEXACT flag to indicate when an arithmetic operation | |
251 is executed exactly with no roundoff error, all part of the | |
252 standard (IEEE 754-1985). The ability to perform shift, add, | |
253 subtract and logical AND operations upon 32-bit words is needed | |
254 too, though not part of the standard. | |
255 | |
256 A. sqrt(x) by Newton Iteration | |
257 | |
258 (1) Initial approximation | |
259 | |
260 Let x0 and x1 be the leading and the trailing 32-bit words of | |
261 a floating point number x (in IEEE double format) respectively | |
262 | |
263 1 11 52 ...widths | |
264 ------------------------------------------------------ | |
265 x: |s| e | f | | |
266 ------------------------------------------------------ | |
267 msb lsb msb lsb ...order | |
268 | |
269 | |
270 ------------------------ ------------------------ | |
271 x0: |s| e | f1 | x1: | f2 | | |
272 ------------------------ ------------------------ | |
273 | |
274 By performing shifts and subtracts on x0 and x1 (both regarded | |
275 as integers), we obtain an 8-bit approximation of sqrt(x) as | |
276 follows. | |
277 | |
278 k := (x0>>1) + 0x1ff80000; | |
279 y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits | |
280 Here k is a 32-bit integer and T1[] is an integer array containing | |
281 correction terms. Now magically the floating value of y (y's | |
282 leading 32-bit word is y0, the value of its trailing word is 0) | |
283 approximates sqrt(x) to almost 8-bit. | |
284 | |
285 Value of T1: | |
286 static int T1[32]= { | |
287 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, | |
288 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, | |
289 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, | |
290 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; | |
291 | |
292 (2) Iterative refinement | |
293 | |
294 Apply Heron's rule three times to y, we have y approximates | |
295 sqrt(x) to within 1 ulp (Unit in the Last Place): | |
296 | |
297 y := (y+x/y)/2 ... almost 17 sig. bits | |
298 y := (y+x/y)/2 ... almost 35 sig. bits | |
299 y := y-(y-x/y)/2 ... within 1 ulp | |
300 | |
301 | |
302 Remark 1. | |
303 Another way to improve y to within 1 ulp is: | |
304 | |
305 y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) | |
306 y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) | |
307 | |
308 2 | |
309 (x-y )*y | |
310 y := y + 2* ---------- ...within 1 ulp | |
311 2 | |
312 3y + x | |
313 | |
314 | |
315 This formula has one division fewer than the one above; however, | |
316 it requires more multiplications and additions. Also x must be | |
317 scaled in advance to avoid spurious overflow in evaluating the | |
318 expression 3y*y+x. Hence it is not recommended uless division | |
319 is slow. If division is very slow, then one should use the | |
320 reciproot algorithm given in section B. | |
321 | |
322 (3) Final adjustment | |
323 | |
324 By twiddling y's last bit it is possible to force y to be | |
325 correctly rounded according to the prevailing rounding mode | |
326 as follows. Let r and i be copies of the rounding mode and | |
327 inexact flag before entering the square root program. Also we | |
328 use the expression y+-ulp for the next representable floating | |
329 numbers (up and down) of y. Note that y+-ulp = either fixed | |
330 point y+-1, or multiply y by nextafter(1,+-inf) in chopped | |
331 mode. | |
332 | |
333 I := FALSE; ... reset INEXACT flag I | |
334 R := RZ; ... set rounding mode to round-toward-zero | |
335 z := x/y; ... chopped quotient, possibly inexact | |
336 If(not I) then { ... if the quotient is exact | |
337 if(z=y) { | |
338 I := i; ... restore inexact flag | |
339 R := r; ... restore rounded mode | |
340 return sqrt(x):=y. | |
341 } else { | |
342 z := z - ulp; ... special rounding | |
343 } | |
344 } | |
345 i := TRUE; ... sqrt(x) is inexact | |
346 If (r=RN) then z=z+ulp ... rounded-to-nearest | |
347 If (r=RP) then { ... round-toward-+inf | |
348 y = y+ulp; z=z+ulp; | |
349 } | |
350 y := y+z; ... chopped sum | |
351 y0:=y0-0x00100000; ... y := y/2 is correctly rounded. | |
352 I := i; ... restore inexact flag | |
353 R := r; ... restore rounded mode | |
354 return sqrt(x):=y. | |
355 | |
356 (4) Special cases | |
357 | |
358 Square root of +inf, +-0, or NaN is itself; | |
359 Square root of a negative number is NaN with invalid signal. | |
360 | |
361 | |
362 B. sqrt(x) by Reciproot Iteration | |
363 | |
364 (1) Initial approximation | |
365 | |
366 Let x0 and x1 be the leading and the trailing 32-bit words of | |
367 a floating point number x (in IEEE double format) respectively | |
368 (see section A). By performing shifs and subtracts on x0 and y0, | |
369 we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. | |
370 | |
371 k := 0x5fe80000 - (x0>>1); | |
372 y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits | |
373 | |
374 Here k is a 32-bit integer and T2[] is an integer array | |
375 containing correction terms. Now magically the floating | |
376 value of y (y's leading 32-bit word is y0, the value of | |
377 its trailing word y1 is set to zero) approximates 1/sqrt(x) | |
378 to almost 7.8-bit. | |
379 | |
380 Value of T2: | |
381 static int T2[64]= { | |
382 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, | |
383 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, | |
384 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, | |
385 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, | |
386 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, | |
387 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, | |
388 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, | |
389 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; | |
390 | |
391 (2) Iterative refinement | |
392 | |
393 Apply Reciproot iteration three times to y and multiply the | |
394 result by x to get an approximation z that matches sqrt(x) | |
395 to about 1 ulp. To be exact, we will have | |
396 -1ulp < sqrt(x)-z<1.0625ulp. | |
397 | |
398 ... set rounding mode to Round-to-nearest | |
399 y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) | |
400 y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) | |
401 ... special arrangement for better accuracy | |
402 z := x*y ... 29 bits to sqrt(x), with z*y<1 | |
403 z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) | |
404 | |
405 Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that | |
406 (a) the term z*y in the final iteration is always less than 1; | |
407 (b) the error in the final result is biased upward so that | |
408 -1 ulp < sqrt(x) - z < 1.0625 ulp | |
409 instead of |sqrt(x)-z|<1.03125ulp. | |
410 | |
411 (3) Final adjustment | |
412 | |
413 By twiddling y's last bit it is possible to force y to be | |
414 correctly rounded according to the prevailing rounding mode | |
415 as follows. Let r and i be copies of the rounding mode and | |
416 inexact flag before entering the square root program. Also we | |
417 use the expression y+-ulp for the next representable floating | |
418 numbers (up and down) of y. Note that y+-ulp = either fixed | |
419 point y+-1, or multiply y by nextafter(1,+-inf) in chopped | |
420 mode. | |
421 | |
422 R := RZ; ... set rounding mode to round-toward-zero | |
423 switch(r) { | |
424 case RN: ... round-to-nearest | |
425 if(x<= z*(z-ulp)...chopped) z = z - ulp; else | |
426 if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; | |
427 break; | |
428 case RZ:case RM: ... round-to-zero or round-to--inf | |
429 R:=RP; ... reset rounding mod to round-to-+inf | |
430 if(x<z*z ... rounded up) z = z - ulp; else | |
431 if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; | |
432 break; | |
433 case RP: ... round-to-+inf | |
434 if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else | |
435 if(x>z*z ...chopped) z = z+ulp; | |
436 break; | |
437 } | |
438 | |
439 Remark 3. The above comparisons can be done in fixed point. For | |
440 example, to compare x and w=z*z chopped, it suffices to compare | |
441 x1 and w1 (the trailing parts of x and w), regarding them as | |
442 two's complement integers. | |
443 | |
444 ...Is z an exact square root? | |
445 To determine whether z is an exact square root of x, let z1 be the | |
446 trailing part of z, and also let x0 and x1 be the leading and | |
447 trailing parts of x. | |
448 | |
449 If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 | |
450 I := 1; ... Raise Inexact flag: z is not exact | |
451 else { | |
452 j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 | |
453 k := z1 >> 26; ... get z's 25-th and 26-th | |
454 fraction bits | |
455 I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); | |
456 } | |
457 R:= r ... restore rounded mode | |
458 return sqrt(x):=z. | |
459 | |
460 If multiplication is cheaper then the foregoing red tape, the | |
461 Inexact flag can be evaluated by | |
462 | |
463 I := i; | |
464 I := (z*z!=x) or I. | |
465 | |
466 Note that z*z can overwrite I; this value must be sensed if it is | |
467 True. | |
468 | |
469 Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be | |
470 zero. | |
471 | |
472 -------------------- | |
473 z1: | f2 | | |
474 -------------------- | |
475 bit 31 bit 0 | |
476 | |
477 Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd | |
478 or even of logb(x) have the following relations: | |
479 | |
480 ------------------------------------------------- | |
481 bit 27,26 of z1 bit 1,0 of x1 logb(x) | |
482 ------------------------------------------------- | |
483 00 00 odd and even | |
484 01 01 even | |
485 10 10 odd | |
486 10 00 even | |
487 11 01 even | |
488 ------------------------------------------------- | |
489 | |
490 (4) Special cases (see (4) of Section A). | |
491 | |
492 */ | |
493 |