Mercurial > sdl-ios-xcode
comparison src/video/e_log.h @ 1330:450721ad5436
It's now possible to build SDL without any C runtime at all on Windows,
using Visual C++ 2005
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 06 Feb 2006 08:28:51 +0000 |
parents | |
children | 782fd950bd46 c121d94672cb |
comparison
equal
deleted
inserted
replaced
1329:bc67bbf87818 | 1330:450721ad5436 |
---|---|
1 /* @(#)e_log.c 5.1 93/09/24 */ | |
2 /* | |
3 * ==================================================== | |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 * | |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 * Permission to use, copy, modify, and distribute this | |
8 * software is freely granted, provided that this notice | |
9 * is preserved. | |
10 * ==================================================== | |
11 */ | |
12 | |
13 #if defined(LIBM_SCCS) && !defined(lint) | |
14 static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; | |
15 #endif | |
16 | |
17 /* __ieee754_log(x) | |
18 * Return the logrithm of x | |
19 * | |
20 * Method : | |
21 * 1. Argument Reduction: find k and f such that | |
22 * x = 2^k * (1+f), | |
23 * where sqrt(2)/2 < 1+f < sqrt(2) . | |
24 * | |
25 * 2. Approximation of log(1+f). | |
26 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | |
27 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., | |
28 * = 2s + s*R | |
29 * We use a special Reme algorithm on [0,0.1716] to generate | |
30 * a polynomial of degree 14 to approximate R The maximum error | |
31 * of this polynomial approximation is bounded by 2**-58.45. In | |
32 * other words, | |
33 * 2 4 6 8 10 12 14 | |
34 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s | |
35 * (the values of Lg1 to Lg7 are listed in the program) | |
36 * and | |
37 * | 2 14 | -58.45 | |
38 * | Lg1*s +...+Lg7*s - R(z) | <= 2 | |
39 * | | | |
40 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | |
41 * In order to guarantee error in log below 1ulp, we compute log | |
42 * by | |
43 * log(1+f) = f - s*(f - R) (if f is not too large) | |
44 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) | |
45 * | |
46 * 3. Finally, log(x) = k*ln2 + log(1+f). | |
47 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) | |
48 * Here ln2 is split into two floating point number: | |
49 * ln2_hi + ln2_lo, | |
50 * where n*ln2_hi is always exact for |n| < 2000. | |
51 * | |
52 * Special cases: | |
53 * log(x) is NaN with signal if x < 0 (including -INF) ; | |
54 * log(+INF) is +INF; log(0) is -INF with signal; | |
55 * log(NaN) is that NaN with no signal. | |
56 * | |
57 * Accuracy: | |
58 * according to an error analysis, the error is always less than | |
59 * 1 ulp (unit in the last place). | |
60 * | |
61 * Constants: | |
62 * The hexadecimal values are the intended ones for the following | |
63 * constants. The decimal values may be used, provided that the | |
64 * compiler will convert from decimal to binary accurately enough | |
65 * to produce the hexadecimal values shown. | |
66 */ | |
67 | |
68 /*#include "math.h"*/ | |
69 #include "math_private.h" | |
70 | |
71 #ifdef __STDC__ | |
72 static const double | |
73 #else | |
74 static double | |
75 #endif | |
76 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ | |
77 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ | |
78 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ | |
79 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ | |
80 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ | |
81 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ | |
82 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ | |
83 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ | |
84 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ | |
85 | |
86 #ifdef __STDC__ | |
87 double __ieee754_log(double x) | |
88 #else | |
89 double __ieee754_log(x) | |
90 double x; | |
91 #endif | |
92 { | |
93 double hfsq,f,s,z,R,w,t1,t2,dk; | |
94 int32_t k,hx,i,j; | |
95 u_int32_t lx; | |
96 | |
97 EXTRACT_WORDS(hx,lx,x); | |
98 | |
99 k=0; | |
100 if (hx < 0x00100000) { /* x < 2**-1022 */ | |
101 if (((hx&0x7fffffff)|lx)==0) | |
102 return -two54/zero; /* log(+-0)=-inf */ | |
103 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ | |
104 k -= 54; x *= two54; /* subnormal number, scale up x */ | |
105 GET_HIGH_WORD(hx,x); | |
106 } | |
107 if (hx >= 0x7ff00000) return x+x; | |
108 k += (hx>>20)-1023; | |
109 hx &= 0x000fffff; | |
110 i = (hx+0x95f64)&0x100000; | |
111 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ | |
112 k += (i>>20); | |
113 f = x-1.0; | |
114 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ | |
115 if(f==zero) {if(k==0) return zero; else {dk=(double)k; | |
116 return dk*ln2_hi+dk*ln2_lo;} | |
117 } | |
118 R = f*f*(0.5-0.33333333333333333*f); | |
119 if(k==0) return f-R; else {dk=(double)k; | |
120 return dk*ln2_hi-((R-dk*ln2_lo)-f);} | |
121 } | |
122 s = f/(2.0+f); | |
123 dk = (double)k; | |
124 z = s*s; | |
125 i = hx-0x6147a; | |
126 w = z*z; | |
127 j = 0x6b851-hx; | |
128 t1= w*(Lg2+w*(Lg4+w*Lg6)); | |
129 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | |
130 i |= j; | |
131 R = t2+t1; | |
132 if(i>0) { | |
133 hfsq=0.5*f*f; | |
134 if(k==0) return f-(hfsq-s*(hfsq+R)); else | |
135 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); | |
136 } else { | |
137 if(k==0) return f-s*(f-R); else | |
138 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); | |
139 } | |
140 } |