comparison src/render/mmx.h @ 5159:307ccc9c135e

Made it possible to create a texture of any format, even if not supported by the renderer. This allows me to reduce the set of formats supported by the renderers to the most optimal set, for a nice speed boost.
author Sam Lantinga <slouken@libsdl.org>
date Thu, 03 Feb 2011 00:19:40 -0800
parents src/video/mmx.h@f2c2f0ecba5f
children
comparison
equal deleted inserted replaced
5158:f3ebd1950442 5159:307ccc9c135e
1 /* mmx.h
2
3 MultiMedia eXtensions GCC interface library for IA32.
4
5 To use this library, simply include this header file
6 and compile with GCC. You MUST have inlining enabled
7 in order for mmx_ok() to work; this can be done by
8 simply using -O on the GCC command line.
9
10 Compiling with -DMMX_TRACE will cause detailed trace
11 output to be sent to stderr for each mmx operation.
12 This adds lots of code, and obviously slows execution to
13 a crawl, but can be very useful for debugging.
14
15 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
16 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
17 LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
18 AND FITNESS FOR ANY PARTICULAR PURPOSE.
19
20 1997-99 by H. Dietz and R. Fisher
21
22 Notes:
23 It appears that the latest gas has the pand problem fixed, therefore
24 I'll undefine BROKEN_PAND by default.
25 */
26
27 #ifndef _MMX_H
28 #define _MMX_H
29
30
31 /* Warning: at this writing, the version of GAS packaged
32 with most Linux distributions does not handle the
33 parallel AND operation mnemonic correctly. If the
34 symbol BROKEN_PAND is defined, a slower alternative
35 coding will be used. If execution of mmxtest results
36 in an illegal instruction fault, define this symbol.
37 */
38 #undef BROKEN_PAND
39
40
41 /* The type of an value that fits in an MMX register
42 (note that long long constant values MUST be suffixed
43 by LL and unsigned long long values by ULL, lest
44 they be truncated by the compiler)
45 */
46 typedef union
47 {
48 long long q; /* Quadword (64-bit) value */
49 unsigned long long uq; /* Unsigned Quadword */
50 int d[2]; /* 2 Doubleword (32-bit) values */
51 unsigned int ud[2]; /* 2 Unsigned Doubleword */
52 short w[4]; /* 4 Word (16-bit) values */
53 unsigned short uw[4]; /* 4 Unsigned Word */
54 char b[8]; /* 8 Byte (8-bit) values */
55 unsigned char ub[8]; /* 8 Unsigned Byte */
56 float s[2]; /* Single-precision (32-bit) value */
57 } __attribute__ ((aligned(8))) mmx_t; /* On an 8-byte (64-bit) boundary */
58
59
60 #if 0
61 /* Function to test if multimedia instructions are supported...
62 */
63 inline extern int
64 mm_support(void)
65 {
66 /* Returns 1 if MMX instructions are supported,
67 3 if Cyrix MMX and Extended MMX instructions are supported
68 5 if AMD MMX and 3DNow! instructions are supported
69 0 if hardware does not support any of these
70 */
71 register int rval = 0;
72
73 __asm__ __volatile__(
74 /* See if CPUID instruction is supported ... */
75 /* ... Get copies of EFLAGS into eax and ecx */
76 "pushf\n\t"
77 "popl %%eax\n\t" "movl %%eax, %%ecx\n\t"
78 /* ... Toggle the ID bit in one copy and store */
79 /* to the EFLAGS reg */
80 "xorl $0x200000, %%eax\n\t"
81 "push %%eax\n\t" "popf\n\t"
82 /* ... Get the (hopefully modified) EFLAGS */
83 "pushf\n\t" "popl %%eax\n\t"
84 /* ... Compare and test result */
85 "xorl %%eax, %%ecx\n\t" "testl $0x200000, %%ecx\n\t" "jz NotSupported1\n\t" /* CPUID not supported */
86 /* Get standard CPUID information, and
87 go to a specific vendor section */
88 "movl $0, %%eax\n\t" "cpuid\n\t"
89 /* Check for Intel */
90 "cmpl $0x756e6547, %%ebx\n\t"
91 "jne TryAMD\n\t"
92 "cmpl $0x49656e69, %%edx\n\t"
93 "jne TryAMD\n\t"
94 "cmpl $0x6c65746e, %%ecx\n"
95 "jne TryAMD\n\t" "jmp Intel\n\t"
96 /* Check for AMD */
97 "\nTryAMD:\n\t"
98 "cmpl $0x68747541, %%ebx\n\t"
99 "jne TryCyrix\n\t"
100 "cmpl $0x69746e65, %%edx\n\t"
101 "jne TryCyrix\n\t"
102 "cmpl $0x444d4163, %%ecx\n"
103 "jne TryCyrix\n\t" "jmp AMD\n\t"
104 /* Check for Cyrix */
105 "\nTryCyrix:\n\t"
106 "cmpl $0x69727943, %%ebx\n\t"
107 "jne NotSupported2\n\t"
108 "cmpl $0x736e4978, %%edx\n\t"
109 "jne NotSupported3\n\t"
110 "cmpl $0x64616574, %%ecx\n\t"
111 "jne NotSupported4\n\t"
112 /* Drop through to Cyrix... */
113 /* Cyrix Section */
114 /* See if extended CPUID level 80000001 is supported */
115 /* The value of CPUID/80000001 for the 6x86MX is undefined
116 according to the Cyrix CPU Detection Guide (Preliminary
117 Rev. 1.01 table 1), so we'll check the value of eax for
118 CPUID/0 to see if standard CPUID level 2 is supported.
119 According to the table, the only CPU which supports level
120 2 is also the only one which supports extended CPUID levels.
121 */
122 "cmpl $0x2, %%eax\n\t" "jne MMXtest\n\t" /* Use standard CPUID instead */
123 /* Extended CPUID supported (in theory), so get extended
124 features */
125 "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%eax\n\t" /* Test for MMX */
126 "jz NotSupported5\n\t" /* MMX not supported */
127 "testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */
128 "jnz EMMXSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */
129 "jmp Return\n\n" "EMMXSupported:\n\t" "movl $3, %0:\n\n\t" /* EMMX and MMX Supported */
130 "jmp Return\n\t"
131 /* AMD Section */
132 "AMD:\n\t"
133 /* See if extended CPUID is supported */
134 "movl $0x80000000, %%eax\n\t" "cpuid\n\t" "cmpl $0x80000000, %%eax\n\t" "jl MMXtest\n\t" /* Use standard CPUID instead */
135 /* Extended CPUID supported, so get extended features */
136 "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */
137 "jz NotSupported6\n\t" /* MMX not supported */
138 "testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */
139 "jnz ThreeDNowSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */
140 "jmp Return\n\n" "ThreeDNowSupported:\n\t" "movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */
141 "jmp Return\n\t"
142 /* Intel Section */
143 "Intel:\n\t"
144 /* Check for MMX */
145 "MMXtest:\n\t" "movl $1, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */
146 "jz NotSupported7\n\t" /* MMX Not supported */
147 "movl $1, %0:\n\n\t" /* MMX Supported */
148 "jmp Return\n\t"
149 /* Nothing supported */
150 "\nNotSupported1:\n\t" "#movl $101, %0:\n\n\t" "\nNotSupported2:\n\t" "#movl $102, %0:\n\n\t" "\nNotSupported3:\n\t" "#movl $103, %0:\n\n\t" "\nNotSupported4:\n\t" "#movl $104, %0:\n\n\t" "\nNotSupported5:\n\t" "#movl $105, %0:\n\n\t" "\nNotSupported6:\n\t" "#movl $106, %0:\n\n\t" "\nNotSupported7:\n\t" "#movl $107, %0:\n\n\t" "movl $0, %0:\n\n\t" "Return:\n\t":"=a"(rval): /* no input */
151 :"eax", "ebx", "ecx", "edx");
152
153 /* Return */
154 return (rval);
155 }
156
157 /* Function to test if mmx instructions are supported...
158 */
159 inline extern int
160 mmx_ok(void)
161 {
162 /* Returns 1 if MMX instructions are supported, 0 otherwise */
163 return (mm_support() & 0x1);
164 }
165 #endif
166
167 /* Helper functions for the instruction macros that follow...
168 (note that memory-to-register, m2r, instructions are nearly
169 as efficient as register-to-register, r2r, instructions;
170 however, memory-to-memory instructions are really simulated
171 as a convenience, and are only 1/3 as efficient)
172 */
173 #ifdef MMX_TRACE
174
175 /* Include the stuff for printing a trace to stderr...
176 */
177
178 #define mmx_i2r(op, imm, reg) \
179 { \
180 mmx_t mmx_trace; \
181 mmx_trace.uq = (imm); \
182 printf(#op "_i2r(" #imm "=0x%08x%08x, ", \
183 mmx_trace.d[1], mmx_trace.d[0]); \
184 __asm__ __volatile__ ("movq %%" #reg ", %0" \
185 : "=X" (mmx_trace) \
186 : /* nothing */ ); \
187 printf(#reg "=0x%08x%08x) => ", \
188 mmx_trace.d[1], mmx_trace.d[0]); \
189 __asm__ __volatile__ (#op " %0, %%" #reg \
190 : /* nothing */ \
191 : "X" (imm)); \
192 __asm__ __volatile__ ("movq %%" #reg ", %0" \
193 : "=X" (mmx_trace) \
194 : /* nothing */ ); \
195 printf(#reg "=0x%08x%08x\n", \
196 mmx_trace.d[1], mmx_trace.d[0]); \
197 }
198
199 #define mmx_m2r(op, mem, reg) \
200 { \
201 mmx_t mmx_trace; \
202 mmx_trace = (mem); \
203 printf(#op "_m2r(" #mem "=0x%08x%08x, ", \
204 mmx_trace.d[1], mmx_trace.d[0]); \
205 __asm__ __volatile__ ("movq %%" #reg ", %0" \
206 : "=X" (mmx_trace) \
207 : /* nothing */ ); \
208 printf(#reg "=0x%08x%08x) => ", \
209 mmx_trace.d[1], mmx_trace.d[0]); \
210 __asm__ __volatile__ (#op " %0, %%" #reg \
211 : /* nothing */ \
212 : "X" (mem)); \
213 __asm__ __volatile__ ("movq %%" #reg ", %0" \
214 : "=X" (mmx_trace) \
215 : /* nothing */ ); \
216 printf(#reg "=0x%08x%08x\n", \
217 mmx_trace.d[1], mmx_trace.d[0]); \
218 }
219
220 #define mmx_r2m(op, reg, mem) \
221 { \
222 mmx_t mmx_trace; \
223 __asm__ __volatile__ ("movq %%" #reg ", %0" \
224 : "=X" (mmx_trace) \
225 : /* nothing */ ); \
226 printf(#op "_r2m(" #reg "=0x%08x%08x, ", \
227 mmx_trace.d[1], mmx_trace.d[0]); \
228 mmx_trace = (mem); \
229 printf(#mem "=0x%08x%08x) => ", \
230 mmx_trace.d[1], mmx_trace.d[0]); \
231 __asm__ __volatile__ (#op " %%" #reg ", %0" \
232 : "=X" (mem) \
233 : /* nothing */ ); \
234 mmx_trace = (mem); \
235 printf(#mem "=0x%08x%08x\n", \
236 mmx_trace.d[1], mmx_trace.d[0]); \
237 }
238
239 #define mmx_r2r(op, regs, regd) \
240 { \
241 mmx_t mmx_trace; \
242 __asm__ __volatile__ ("movq %%" #regs ", %0" \
243 : "=X" (mmx_trace) \
244 : /* nothing */ ); \
245 printf(#op "_r2r(" #regs "=0x%08x%08x, ", \
246 mmx_trace.d[1], mmx_trace.d[0]); \
247 __asm__ __volatile__ ("movq %%" #regd ", %0" \
248 : "=X" (mmx_trace) \
249 : /* nothing */ ); \
250 printf(#regd "=0x%08x%08x) => ", \
251 mmx_trace.d[1], mmx_trace.d[0]); \
252 __asm__ __volatile__ (#op " %" #regs ", %" #regd); \
253 __asm__ __volatile__ ("movq %%" #regd ", %0" \
254 : "=X" (mmx_trace) \
255 : /* nothing */ ); \
256 printf(#regd "=0x%08x%08x\n", \
257 mmx_trace.d[1], mmx_trace.d[0]); \
258 }
259
260 #define mmx_m2m(op, mems, memd) \
261 { \
262 mmx_t mmx_trace; \
263 mmx_trace = (mems); \
264 printf(#op "_m2m(" #mems "=0x%08x%08x, ", \
265 mmx_trace.d[1], mmx_trace.d[0]); \
266 mmx_trace = (memd); \
267 printf(#memd "=0x%08x%08x) => ", \
268 mmx_trace.d[1], mmx_trace.d[0]); \
269 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
270 #op " %1, %%mm0\n\t" \
271 "movq %%mm0, %0" \
272 : "=X" (memd) \
273 : "X" (mems)); \
274 mmx_trace = (memd); \
275 printf(#memd "=0x%08x%08x\n", \
276 mmx_trace.d[1], mmx_trace.d[0]); \
277 }
278
279 #else
280
281 /* These macros are a lot simpler without the tracing...
282 */
283
284 #define mmx_i2r(op, imm, reg) \
285 __asm__ __volatile__ (#op " %0, %%" #reg \
286 : /* nothing */ \
287 : "X" (imm) )
288
289 #define mmx_m2r(op, mem, reg) \
290 __asm__ __volatile__ (#op " %0, %%" #reg \
291 : /* nothing */ \
292 : "m" (mem))
293
294 #define mmx_r2m(op, reg, mem) \
295 __asm__ __volatile__ (#op " %%" #reg ", %0" \
296 : "=m" (mem) \
297 : /* nothing */ )
298
299 #define mmx_r2r(op, regs, regd) \
300 __asm__ __volatile__ (#op " %" #regs ", %" #regd)
301
302 #define mmx_m2m(op, mems, memd) \
303 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
304 #op " %1, %%mm0\n\t" \
305 "movq %%mm0, %0" \
306 : "=X" (memd) \
307 : "X" (mems))
308
309 #endif
310
311
312 /* 1x64 MOVe Quadword
313 (this is both a load and a store...
314 in fact, it is the only way to store)
315 */
316 #define movq_m2r(var, reg) mmx_m2r(movq, var, reg)
317 #define movq_r2m(reg, var) mmx_r2m(movq, reg, var)
318 #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd)
319 #define movq(vars, vard) \
320 __asm__ __volatile__ ("movq %1, %%mm0\n\t" \
321 "movq %%mm0, %0" \
322 : "=X" (vard) \
323 : "X" (vars))
324
325
326 /* 1x32 MOVe Doubleword
327 (like movq, this is both load and store...
328 but is most useful for moving things between
329 mmx registers and ordinary registers)
330 */
331 #define movd_m2r(var, reg) mmx_m2r(movd, var, reg)
332 #define movd_r2m(reg, var) mmx_r2m(movd, reg, var)
333 #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd)
334 #define movd(vars, vard) \
335 __asm__ __volatile__ ("movd %1, %%mm0\n\t" \
336 "movd %%mm0, %0" \
337 : "=X" (vard) \
338 : "X" (vars))
339
340
341 /* 2x32, 4x16, and 8x8 Parallel ADDs
342 */
343 #define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg)
344 #define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd)
345 #define paddd(vars, vard) mmx_m2m(paddd, vars, vard)
346
347 #define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg)
348 #define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd)
349 #define paddw(vars, vard) mmx_m2m(paddw, vars, vard)
350
351 #define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg)
352 #define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd)
353 #define paddb(vars, vard) mmx_m2m(paddb, vars, vard)
354
355
356 /* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic
357 */
358 #define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg)
359 #define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd)
360 #define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard)
361
362 #define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg)
363 #define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd)
364 #define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard)
365
366
367 /* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
368 */
369 #define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg)
370 #define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd)
371 #define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard)
372
373 #define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg)
374 #define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd)
375 #define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard)
376
377
378 /* 2x32, 4x16, and 8x8 Parallel SUBs
379 */
380 #define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg)
381 #define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd)
382 #define psubd(vars, vard) mmx_m2m(psubd, vars, vard)
383
384 #define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg)
385 #define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd)
386 #define psubw(vars, vard) mmx_m2m(psubw, vars, vard)
387
388 #define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg)
389 #define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd)
390 #define psubb(vars, vard) mmx_m2m(psubb, vars, vard)
391
392
393 /* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic
394 */
395 #define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg)
396 #define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd)
397 #define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard)
398
399 #define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg)
400 #define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd)
401 #define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard)
402
403
404 /* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
405 */
406 #define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg)
407 #define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd)
408 #define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard)
409
410 #define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg)
411 #define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd)
412 #define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard)
413
414
415 /* 4x16 Parallel MULs giving Low 4x16 portions of results
416 */
417 #define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg)
418 #define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd)
419 #define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard)
420
421
422 /* 4x16 Parallel MULs giving High 4x16 portions of results
423 */
424 #define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg)
425 #define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd)
426 #define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard)
427
428
429 /* 4x16->2x32 Parallel Mul-ADD
430 (muls like pmullw, then adds adjacent 16-bit fields
431 in the multiply result to make the final 2x32 result)
432 */
433 #define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg)
434 #define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd)
435 #define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard)
436
437
438 /* 1x64 bitwise AND
439 */
440 #ifdef BROKEN_PAND
441 #define pand_m2r(var, reg) \
442 { \
443 mmx_m2r(pandn, (mmx_t) -1LL, reg); \
444 mmx_m2r(pandn, var, reg); \
445 }
446 #define pand_r2r(regs, regd) \
447 { \
448 mmx_m2r(pandn, (mmx_t) -1LL, regd); \
449 mmx_r2r(pandn, regs, regd) \
450 }
451 #define pand(vars, vard) \
452 { \
453 movq_m2r(vard, mm0); \
454 mmx_m2r(pandn, (mmx_t) -1LL, mm0); \
455 mmx_m2r(pandn, vars, mm0); \
456 movq_r2m(mm0, vard); \
457 }
458 #else
459 #define pand_m2r(var, reg) mmx_m2r(pand, var, reg)
460 #define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd)
461 #define pand(vars, vard) mmx_m2m(pand, vars, vard)
462 #endif
463
464
465 /* 1x64 bitwise AND with Not the destination
466 */
467 #define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg)
468 #define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd)
469 #define pandn(vars, vard) mmx_m2m(pandn, vars, vard)
470
471
472 /* 1x64 bitwise OR
473 */
474 #define por_m2r(var, reg) mmx_m2r(por, var, reg)
475 #define por_r2r(regs, regd) mmx_r2r(por, regs, regd)
476 #define por(vars, vard) mmx_m2m(por, vars, vard)
477
478
479 /* 1x64 bitwise eXclusive OR
480 */
481 #define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg)
482 #define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd)
483 #define pxor(vars, vard) mmx_m2m(pxor, vars, vard)
484
485
486 /* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
487 (resulting fields are either 0 or -1)
488 */
489 #define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg)
490 #define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd)
491 #define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard)
492
493 #define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg)
494 #define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd)
495 #define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard)
496
497 #define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg)
498 #define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd)
499 #define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard)
500
501
502 /* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
503 (resulting fields are either 0 or -1)
504 */
505 #define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg)
506 #define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd)
507 #define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard)
508
509 #define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg)
510 #define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd)
511 #define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard)
512
513 #define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg)
514 #define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd)
515 #define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard)
516
517
518 /* 1x64, 2x32, and 4x16 Parallel Shift Left Logical
519 */
520 #define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg)
521 #define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg)
522 #define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd)
523 #define psllq(vars, vard) mmx_m2m(psllq, vars, vard)
524
525 #define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg)
526 #define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg)
527 #define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd)
528 #define pslld(vars, vard) mmx_m2m(pslld, vars, vard)
529
530 #define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg)
531 #define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg)
532 #define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd)
533 #define psllw(vars, vard) mmx_m2m(psllw, vars, vard)
534
535
536 /* 1x64, 2x32, and 4x16 Parallel Shift Right Logical
537 */
538 #define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg)
539 #define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg)
540 #define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd)
541 #define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard)
542
543 #define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg)
544 #define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg)
545 #define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd)
546 #define psrld(vars, vard) mmx_m2m(psrld, vars, vard)
547
548 #define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg)
549 #define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg)
550 #define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd)
551 #define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard)
552
553
554 /* 2x32 and 4x16 Parallel Shift Right Arithmetic
555 */
556 #define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg)
557 #define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg)
558 #define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd)
559 #define psrad(vars, vard) mmx_m2m(psrad, vars, vard)
560
561 #define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg)
562 #define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg)
563 #define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd)
564 #define psraw(vars, vard) mmx_m2m(psraw, vars, vard)
565
566
567 /* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
568 (packs source and dest fields into dest in that order)
569 */
570 #define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg)
571 #define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
572 #define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard)
573
574 #define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg)
575 #define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
576 #define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard)
577
578
579 /* 4x16->8x8 PACK and Unsigned Saturate
580 (packs source and dest fields into dest in that order)
581 */
582 #define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg)
583 #define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
584 #define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard)
585
586
587 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
588 (interleaves low half of dest with low half of source
589 as padding in each result field)
590 */
591 #define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg)
592 #define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
593 #define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard)
594
595 #define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg)
596 #define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
597 #define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard)
598
599 #define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg)
600 #define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
601 #define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard)
602
603
604 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
605 (interleaves high half of dest with high half of source
606 as padding in each result field)
607 */
608 #define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg)
609 #define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
610 #define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard)
611
612 #define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg)
613 #define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
614 #define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard)
615
616 #define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg)
617 #define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
618 #define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard)
619
620
621 /* Empty MMx State
622 (used to clean-up when going from mmx to float use
623 of the registers that are shared by both; note that
624 there is no float-to-mmx operation needed, because
625 only the float tag word info is corruptible)
626 */
627 #ifdef MMX_TRACE
628
629 #define emms() \
630 { \
631 printf("emms()\n"); \
632 __asm__ __volatile__ ("emms"); \
633 }
634
635 #else
636
637 #define emms() __asm__ __volatile__ ("emms")
638
639 #endif
640
641 #endif
642 /* vi: set ts=4 sw=4 expandtab: */