Mercurial > sdl-ios-xcode
comparison src/video/Xext/XmuStdCmap/CmapAlloc.c @ 2185:2032348afed1
This code adds support for DirectColor visuals to SDL 1.3. The support uses part of the Xmu library. To ensure that the library is
available and to keep people form having to install yet another library I have added the essential parts of Xmu in
src/video/extensions/XmuStdCmap and an include file in src/video/extensions. The support makes use of standard X11 mechanisms to
create color maps and make sure that an application uses the same color map for each window/visual combination. This should make it
possible for gamma support to be implemented based on a single color map per application.
Hurm... it looks like "make indent" modified a few extra files. Those are getting committed too.
author | Bob Pendleton <bob@pendleton.com> |
---|---|
date | Thu, 12 Jul 2007 20:00:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2184:8f8516e79a13 | 2185:2032348afed1 |
---|---|
1 /* $Xorg: CmapAlloc.c,v 1.4 2001/02/09 02:03:51 xorgcvs Exp $ */ | |
2 | |
3 /* | |
4 | |
5 Copyright 1989, 1994, 1998 The Open Group | |
6 | |
7 Permission to use, copy, modify, distribute, and sell this software and its | |
8 documentation for any purpose is hereby granted without fee, provided that | |
9 the above copyright notice appear in all copies and that both that | |
10 copyright notice and this permission notice appear in supporting | |
11 documentation. | |
12 | |
13 The above copyright notice and this permission notice shall be included in | |
14 all copies or substantial portions of the Software. | |
15 | |
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
19 OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN | |
20 AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
21 CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
22 | |
23 Except as contained in this notice, the name of The Open Group shall not be | |
24 used in advertising or otherwise to promote the sale, use or other dealings | |
25 in this Software without prior written authorization from The Open Group. | |
26 | |
27 */ | |
28 /* $XFree86: xc/lib/Xmu/CmapAlloc.c,v 1.6 2001/01/17 19:42:53 dawes Exp $ */ | |
29 | |
30 /* | |
31 * Author: Donna Converse, MIT X Consortium | |
32 */ | |
33 | |
34 #ifdef HAVE_CONFIG_H | |
35 #include <config.h> | |
36 #endif | |
37 #include <X11/Xlib.h> | |
38 #include <X11/Xatom.h> | |
39 #include <X11/Xutil.h> | |
40 #include "../extensions/StdCmap.h" | |
41 #include <stdio.h> | |
42 | |
43 #define lowbit(x) ((x) & (~(x) + 1)) | |
44 | |
45 /* | |
46 * Prototypes | |
47 */ | |
48 static void best_allocation(XVisualInfo *, unsigned long *, unsigned long *, | |
49 unsigned long *); | |
50 static int default_allocation(XVisualInfo *, unsigned long *, | |
51 unsigned long *, unsigned long *); | |
52 static void gray_allocation(int, unsigned long *, unsigned long *, | |
53 unsigned long *); | |
54 static int icbrt(int); | |
55 static int icbrt_with_bits(int, int); | |
56 static int icbrt_with_guess(int, int); | |
57 | |
58 /* To determine the best allocation of reds, greens, and blues in a | |
59 * standard colormap, use XmuGetColormapAllocation. | |
60 * vinfo specifies visual information for a chosen visual | |
61 * property specifies one of the standard colormap property names | |
62 * red_max returns maximum red value | |
63 * green_max returns maximum green value | |
64 * blue_max returns maximum blue value | |
65 * | |
66 * XmuGetColormapAllocation returns 0 on failure, non-zero on success. | |
67 * It is assumed that the visual is appropriate for the colormap property. | |
68 */ | |
69 | |
70 Status | |
71 XmuGetColormapAllocation(XVisualInfo * vinfo, Atom property, | |
72 unsigned long *red_max, | |
73 unsigned long *green_max, unsigned long *blue_max) | |
74 { | |
75 Status status = 1; | |
76 | |
77 if (vinfo->colormap_size <= 2) | |
78 return 0; | |
79 | |
80 switch (property) { | |
81 case XA_RGB_DEFAULT_MAP: | |
82 status = default_allocation(vinfo, red_max, green_max, blue_max); | |
83 break; | |
84 case XA_RGB_BEST_MAP: | |
85 best_allocation(vinfo, red_max, green_max, blue_max); | |
86 break; | |
87 case XA_RGB_GRAY_MAP: | |
88 gray_allocation(vinfo->colormap_size, red_max, green_max, blue_max); | |
89 break; | |
90 case XA_RGB_RED_MAP: | |
91 *red_max = vinfo->colormap_size - 1; | |
92 *green_max = *blue_max = 0; | |
93 break; | |
94 case XA_RGB_GREEN_MAP: | |
95 *green_max = vinfo->colormap_size - 1; | |
96 *red_max = *blue_max = 0; | |
97 break; | |
98 case XA_RGB_BLUE_MAP: | |
99 *blue_max = vinfo->colormap_size - 1; | |
100 *red_max = *green_max = 0; | |
101 break; | |
102 default: | |
103 status = 0; | |
104 } | |
105 return status; | |
106 } | |
107 | |
108 /****************************************************************************/ | |
109 /* Determine the appropriate color allocations of a gray scale. | |
110 * | |
111 * Keith Packard, MIT X Consortium | |
112 */ | |
113 | |
114 static void | |
115 gray_allocation(int n, unsigned long *red_max, unsigned long *green_max, | |
116 unsigned long *blue_max) | |
117 { | |
118 *red_max = (n * 30) / 100; | |
119 *green_max = (n * 59) / 100; | |
120 *blue_max = (n * 11) / 100; | |
121 *green_max += ((n - 1) - (*red_max + *green_max + *blue_max)); | |
122 } | |
123 | |
124 /****************************************************************************/ | |
125 /* Determine an appropriate color allocation for the RGB_DEFAULT_MAP. | |
126 * If a map has less than a minimum number of definable entries, we do not | |
127 * produce an allocation for an RGB_DEFAULT_MAP. | |
128 * | |
129 * For 16 planes, the default colormap will have 27 each RGB; for 12 planes, | |
130 * 12 each. For 8 planes, let n = the number of colormap entries, which may | |
131 * be 256 or 254. Then, maximum red value = floor(cube_root(n - 125)) - 1. | |
132 * Maximum green and maximum blue values are identical to maximum red. | |
133 * This leaves at least 125 cells which clients can allocate. | |
134 * | |
135 * Return 0 if an allocation has been determined, non-zero otherwise. | |
136 */ | |
137 | |
138 static int | |
139 default_allocation(XVisualInfo * vinfo, unsigned long *red, | |
140 unsigned long *green, unsigned long *blue) | |
141 { | |
142 int ngrays; /* number of gray cells */ | |
143 | |
144 switch (vinfo->class) { | |
145 case PseudoColor: | |
146 | |
147 if (vinfo->colormap_size > 65000) | |
148 /* intended for displays with 16 planes */ | |
149 *red = *green = *blue = (unsigned long) 27; | |
150 else if (vinfo->colormap_size > 4000) | |
151 /* intended for displays with 12 planes */ | |
152 *red = *green = *blue = (unsigned long) 12; | |
153 else if (vinfo->colormap_size < 250) | |
154 return 0; | |
155 else | |
156 /* intended for displays with 8 planes */ | |
157 *red = *green = *blue = (unsigned long) | |
158 (icbrt(vinfo->colormap_size - 125) - 1); | |
159 break; | |
160 | |
161 case DirectColor: | |
162 | |
163 if (vinfo->colormap_size < 10) | |
164 return 0; | |
165 *red = *green = *blue = vinfo->colormap_size / 2 - 1; | |
166 break; | |
167 | |
168 case TrueColor: | |
169 | |
170 *red = vinfo->red_mask / lowbit(vinfo->red_mask); | |
171 *green = vinfo->green_mask / lowbit(vinfo->green_mask); | |
172 *blue = vinfo->blue_mask / lowbit(vinfo->blue_mask); | |
173 break; | |
174 | |
175 case GrayScale: | |
176 | |
177 if (vinfo->colormap_size > 65000) | |
178 ngrays = 4096; | |
179 else if (vinfo->colormap_size > 4000) | |
180 ngrays = 512; | |
181 else if (vinfo->colormap_size < 250) | |
182 return 0; | |
183 else | |
184 ngrays = 12; | |
185 gray_allocation(ngrays, red, green, blue); | |
186 break; | |
187 | |
188 default: | |
189 return 0; | |
190 } | |
191 return 1; | |
192 } | |
193 | |
194 /****************************************************************************/ | |
195 /* Determine an appropriate color allocation for the RGB_BEST_MAP. | |
196 * | |
197 * For a DirectColor or TrueColor visual, the allocation is determined | |
198 * by the red_mask, green_mask, and blue_mask members of the visual info. | |
199 * | |
200 * Otherwise, if the colormap size is an integral power of 2, determine | |
201 * the allocation according to the number of bits given to each color, | |
202 * with green getting more than red, and red more than blue, if there | |
203 * are to be inequities in the distribution. If the colormap size is | |
204 * not an integral power of 2, let n = the number of colormap entries. | |
205 * Then maximum red value = floor(cube_root(n)) - 1; | |
206 * maximum blue value = floor(cube_root(n)) - 1; | |
207 * maximum green value = n / ((# red values) * (# blue values)) - 1; | |
208 * Which, on a GPX, allows for 252 entries in the best map, out of 254 | |
209 * defineable colormap entries. | |
210 */ | |
211 | |
212 static void | |
213 best_allocation(XVisualInfo * vinfo, unsigned long *red, unsigned long *green, | |
214 unsigned long *blue) | |
215 { | |
216 | |
217 if (vinfo->class == DirectColor || vinfo->class == TrueColor) { | |
218 *red = vinfo->red_mask; | |
219 while ((*red & 01) == 0) | |
220 *red >>= 1; | |
221 *green = vinfo->green_mask; | |
222 while ((*green & 01) == 0) | |
223 *green >>= 1; | |
224 *blue = vinfo->blue_mask; | |
225 while ((*blue & 01) == 0) | |
226 *blue >>= 1; | |
227 } else { | |
228 register int bits, n; | |
229 | |
230 /* Determine n such that n is the least integral power of 2 which is | |
231 * greater than or equal to the number of entries in the colormap. | |
232 */ | |
233 n = 1; | |
234 bits = 0; | |
235 while (vinfo->colormap_size > n) { | |
236 n = n << 1; | |
237 bits++; | |
238 } | |
239 | |
240 /* If the number of entries in the colormap is a power of 2, determine | |
241 * the allocation by "dealing" the bits, first to green, then red, then | |
242 * blue. If not, find the maximum integral red, green, and blue values | |
243 * which, when multiplied together, do not exceed the number of | |
244 | |
245 * colormap entries. | |
246 */ | |
247 if (n == vinfo->colormap_size) { | |
248 register int r, g, b; | |
249 b = bits / 3; | |
250 g = b + ((bits % 3) ? 1 : 0); | |
251 r = b + (((bits % 3) == 2) ? 1 : 0); | |
252 *red = 1 << r; | |
253 *green = 1 << g; | |
254 *blue = 1 << b; | |
255 } else { | |
256 *red = icbrt_with_bits(vinfo->colormap_size, bits); | |
257 *blue = *red; | |
258 *green = (vinfo->colormap_size / ((*red) * (*blue))); | |
259 } | |
260 (*red)--; | |
261 (*green)--; | |
262 (*blue)--; | |
263 } | |
264 return; | |
265 } | |
266 | |
267 /* | |
268 * integer cube roots by Newton's method | |
269 * | |
270 * Stephen Gildea, MIT X Consortium, July 1991 | |
271 */ | |
272 | |
273 static int | |
274 icbrt(int a) | |
275 { | |
276 register int bits = 0; | |
277 register unsigned n = a; | |
278 | |
279 while (n) { | |
280 bits++; | |
281 n >>= 1; | |
282 } | |
283 return icbrt_with_bits(a, bits); | |
284 } | |
285 | |
286 | |
287 static int | |
288 icbrt_with_bits(int a, int bits) | |
289 /* bits - log 2 of a */ | |
290 { | |
291 return icbrt_with_guess(a, a >> 2 * bits / 3); | |
292 } | |
293 | |
294 #ifdef _X_ROOT_STATS | |
295 int icbrt_loopcount; | |
296 #endif | |
297 | |
298 /* Newton's Method: x_n+1 = x_n - ( f(x_n) / f'(x_n) ) */ | |
299 | |
300 /* for cube roots, x^3 - a = 0, x_new = x - 1/3 (x - a/x^2) */ | |
301 | |
302 /* | |
303 * Quick and dirty cube roots. Nothing fancy here, just Newton's method. | |
304 * Only works for positive integers (since that's all we need). | |
305 * We actually return floor(cbrt(a)) because that's what we need here, too. | |
306 */ | |
307 | |
308 static int | |
309 icbrt_with_guess(int a, int guess) | |
310 { | |
311 register int delta; | |
312 | |
313 #ifdef _X_ROOT_STATS | |
314 icbrt_loopcount = 0; | |
315 #endif | |
316 if (a <= 0) | |
317 return 0; | |
318 if (guess < 1) | |
319 guess = 1; | |
320 | |
321 do { | |
322 #ifdef _X_ROOT_STATS | |
323 icbrt_loopcount++; | |
324 #endif | |
325 delta = (guess - a / (guess * guess)) / 3; | |
326 #ifdef DEBUG | |
327 printf("pass %d: guess=%d, delta=%d\n", icbrt_loopcount, guess, | |
328 delta); | |
329 #endif | |
330 guess -= delta; | |
331 } while (delta != 0); | |
332 | |
333 if (guess * guess * guess > a) | |
334 guess--; | |
335 | |
336 return guess; | |
337 } |