comparison src/video/ps3/spulibs/yuv2rgb_converter.c @ 3144:0d8d1f870964 gsoc2009_ps3

Moved SPE-functions to SDL_ps3spe.c. Added ActivateRenderer() and PS3_QueryTexturePixels(). Added yuv2rgb_spu but not yet in use.
author Martin Lowinski <martin@goldtopf.org>
date Wed, 10 Jun 2009 09:15:33 +0000
parents
children
comparison
equal deleted inserted replaced
3143:8fdabaa064c3 3144:0d8d1f870964
1 /*
2 * SDL - Simple DirectMedia Layer
3 * CELL BE Support for PS3 Framebuffer
4 * Copyright (C) 2008, 2009 International Business Machines Corporation
5 *
6 * This library is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU Lesser General Public License as published
8 * by the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
19 * USA
20 *
21 * Martin Lowinski <lowinski [at] de [dot] ibm [ibm] com>
22 * Dirk Herrendoerfer <d.herrendoerfer [at] de [dot] ibm [dot] com>
23 * SPE code based on research by:
24 * Rene Becker
25 * Thimo Emmerich
26 */
27
28 #include "spu_common.h"
29
30 #include <spu_intrinsics.h>
31 #include <spu_mfcio.h>
32
33 // Debugging
34 //#define DEBUG
35
36 #ifdef DEBUG
37 #define deprintf(fmt, args... ) \
38 fprintf( stdout, fmt, ##args ); \
39 fflush( stdout );
40 #else
41 #define deprintf( fmt, args... )
42 #endif
43
44 struct yuv2rgb_parms_t parms_converter __attribute__((aligned(128)));
45
46 /* A maximum of 8 lines Y, therefore 4 lines V, 4 lines U are stored
47 * there might be the need to retrieve misaligned data, adjust
48 * incoming v and u plane to be able to handle this (add 128)
49 */
50 unsigned char y_plane[2][(MAX_HDTV_WIDTH + 128) * 4] __attribute__((aligned(128)));
51 unsigned char v_plane[2][(MAX_HDTV_WIDTH + 128) * 2] __attribute__((aligned(128)));
52 unsigned char u_plane[2][(MAX_HDTV_WIDTH + 128) * 2] __attribute__((aligned(128)));
53
54 /* A maximum of 4 lines BGRA are stored, 4 byte per pixel */
55 unsigned char bgra[4 * MAX_HDTV_WIDTH * 4] __attribute__((aligned(128)));
56
57 /* some vectors needed by the float to int conversion */
58 static const vector float vec_255 = { 255.0f, 255.0f, 255.0f, 255.0f };
59 static const vector float vec_0_1 = { 0.1f, 0.1f, 0.1f, 0.1f };
60
61 void yuv_to_rgb_w16();
62 void yuv_to_rgb_w32();
63
64 void yuv_to_rgb_w16_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr, unsigned int width);
65 void yuv_to_rgb_w32_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_, unsigned int width);
66
67
68 int main(unsigned long long spe_id __attribute__((unused)), unsigned long long argp __attribute__ ((unused)))
69 {
70 deprintf("[SPU] yuv2rgb_spu is up... (on SPE #%llu)\n", spe_id);
71 uint32_t ea_mfc, mbox;
72 // send ready message
73 spu_write_out_mbox(SPU_READY);
74
75 while (1) {
76 /* Check mailbox */
77 mbox = spu_read_in_mbox();
78 deprintf("[SPU] Message is %u\n", mbox);
79 switch (mbox) {
80 case SPU_EXIT:
81 deprintf("[SPU] fb_writer goes down...\n");
82 return 0;
83 case SPU_START:
84 break;
85 default:
86 deprintf("[SPU] Cannot handle message\n");
87 continue;
88 }
89
90 /* Tag Manager setup */
91 unsigned int tag_id;
92 tag_id = mfc_multi_tag_reserve(1);
93 if (tag_id == MFC_TAG_INVALID) {
94 deprintf("[SPU] Failed to reserve mfc tags on yuv2rgb_converter\n");
95 return 0;
96 }
97
98 /* DMA transfer for the input parameters */
99 ea_mfc = spu_read_in_mbox();
100 deprintf("[SPU] Message on yuv2rgb_converter is %u\n", ea_mfc);
101 spu_mfcdma32(&parms_converter, (unsigned int)ea_mfc, sizeof(struct yuv2rgb_parms_t), tag_id, MFC_GET_CMD);
102 DMA_WAIT_TAG(tag_id);
103
104 /* There are alignment issues that involve handling of special cases
105 * a width of 32 results in a width of 16 in the chrominance
106 * --> choose the proper handling to optimize the performance
107 */
108 deprintf("[SPU] Convert %ix%i from YUV to RGB\n", parms_converter.src_pixel_width, parms_converter.src_pixel_height);
109 if (parms_converter.src_pixel_width & 0x1f) {
110 deprintf("[SPU] Using yuv_to_rgb_w16\n");
111 yuv_to_rgb_w16();
112 } else {
113 deprintf("[SPU] Using yuv_to_rgb_w32\n");
114 yuv_to_rgb_w32();
115 }
116
117 mfc_multi_tag_release(tag_id, 1);
118 deprintf("[SPU] yuv2rgb_spu... done!\n");
119 /* Send FIN message */
120 spu_write_out_mbox(SPU_FIN);
121 }
122
123 return 0;
124 }
125
126
127 /*
128 * float_to_char()
129 *
130 * converts a float to a character using saturated
131 * arithmetic
132 *
133 * @param s float for conversion
134 * @returns converted character
135 */
136 inline static unsigned char float_to_char(float s) {
137 vector float vec_s = spu_splats(s);
138 vector unsigned int select_1 = spu_cmpgt(vec_0_1, vec_s);
139 vec_s = spu_sel(vec_s, vec_0_1, select_1);
140
141 vector unsigned int select_2 = spu_cmpgt(vec_s, vec_255);
142 vec_s = spu_sel(vec_s, vec_255, select_2);
143 return (unsigned char) spu_extract(vec_s,0);
144 }
145
146
147 /*
148 * vfloat_to_vuint()
149 *
150 * converts a float vector to an unsinged int vector using saturated
151 * arithmetic
152 *
153 * @param vec_s float vector for conversion
154 * @returns converted unsigned int vector
155 */
156 inline static vector unsigned int vfloat_to_vuint(vector float vec_s) {
157 vector unsigned int select_1 = spu_cmpgt(vec_0_1, vec_s);
158 vec_s = spu_sel(vec_s, vec_0_1, select_1);
159
160 vector unsigned int select_2 = spu_cmpgt(vec_s, vec_255);
161 vec_s = spu_sel(vec_s, vec_255, select_2);
162 return spu_convtu(vec_s,0);
163 }
164
165
166 void yuv_to_rgb_w16() {
167 // Pixel dimensions of the picture
168 uint32_t width, height;
169
170 // Extract parameters
171 width = parms_converter.src_pixel_width;
172 height = parms_converter.src_pixel_height;
173
174 // Plane data management
175 // Y
176 unsigned char* ram_addr_y = parms_converter.y_plane;
177 // V
178 unsigned char* ram_addr_v = parms_converter.v_plane;
179 // U
180 unsigned char* ram_addr_u = parms_converter.u_plane;
181
182 // BGRA
183 unsigned char* ram_addr_bgra = parms_converter.dstBuffer;
184
185 // Strides
186 unsigned int stride_y = width;
187 unsigned int stride_vu = width>>1;
188
189 // Buffer management
190 unsigned int buf_idx = 0;
191 unsigned int size_4lines_y = stride_y<<2;
192 unsigned int size_2lines_y = stride_y<<1;
193 unsigned int size_2lines_vu = stride_vu<<1;
194
195 // 2*width*4byte_per_pixel
196 unsigned int size_2lines_bgra = width<<3;
197
198
199 // start double-buffered processing
200 // 4 lines y
201 spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y, size_4lines_y, RETR_BUF+buf_idx, MFC_GET_CMD);
202
203 // 2 lines v
204 spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD);
205
206 // 2 lines u
207 spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD);
208
209 // Wait for these transfers to be completed
210 DMA_WAIT_TAG((RETR_BUF + buf_idx));
211
212 unsigned int i;
213 for(i=0; i<(height>>2)-1; i++) {
214
215 buf_idx^=1;
216
217 // 4 lines y
218 spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y+size_4lines_y, size_4lines_y, RETR_BUF+buf_idx, MFC_GET_CMD);
219
220 // 2 lines v
221 spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v+size_2lines_vu, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD);
222
223 // 2 lines u
224 spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u+size_2lines_vu, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD);
225
226 DMA_WAIT_TAG((RETR_BUF + buf_idx));
227
228 buf_idx^=1;
229
230
231 // Convert YUV to BGRA, store it back (first two lines)
232 yuv_to_rgb_w16_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width);
233
234 // Next two lines
235 yuv_to_rgb_w16_line(y_plane[buf_idx] + size_2lines_y,
236 v_plane[buf_idx] + stride_vu,
237 u_plane[buf_idx] + stride_vu,
238 bgra + size_2lines_bgra,
239 width);
240
241 // Wait for previous storing transfer to be completed
242 DMA_WAIT_TAG(STR_BUF);
243
244 // Store converted lines in two steps->max transfer size 16384
245 spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
246 ram_addr_bgra += size_2lines_bgra;
247 spu_mfcdma32(bgra+size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
248 ram_addr_bgra += size_2lines_bgra;
249
250 // Move 4 lines
251 ram_addr_y += size_4lines_y;
252 ram_addr_v += size_2lines_vu;
253 ram_addr_u += size_2lines_vu;
254
255 buf_idx^=1;
256 }
257
258 // Convert YUV to BGRA, store it back (first two lines)
259 yuv_to_rgb_w16_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width);
260
261 // Next two lines
262 yuv_to_rgb_w16_line(y_plane[buf_idx] + size_2lines_y,
263 v_plane[buf_idx] + stride_vu,
264 u_plane[buf_idx] + stride_vu,
265 bgra + size_2lines_bgra,
266 width);
267
268 // Wait for previous storing transfer to be completed
269 DMA_WAIT_TAG(STR_BUF);
270 spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
271 ram_addr_bgra += size_2lines_bgra;
272 spu_mfcdma32(bgra+size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
273
274 // wait for previous storing transfer to be completed
275 DMA_WAIT_TAG(STR_BUF);
276
277 }
278
279
280 void yuv_to_rgb_w32() {
281 // Pixel dimensions of the picture
282 uint32_t width, height;
283
284 // Extract parameters
285 width = parms_converter.src_pixel_width;
286 height = parms_converter.src_pixel_height;
287
288 // Plane data management
289 // Y
290 unsigned char* ram_addr_y = parms_converter.y_plane;
291 // V
292 unsigned char* ram_addr_v = parms_converter.v_plane;
293 // U
294 unsigned char* ram_addr_u = parms_converter.u_plane;
295
296 // BGRA
297 unsigned char* ram_addr_bgra = parms_converter.dstBuffer;
298
299 // Strides
300 unsigned int stride_y = width;
301 unsigned int stride_vu = width>>1;
302
303 // Buffer management
304 unsigned int buf_idx = 0;
305 unsigned int size_4lines_y = stride_y<<2;
306 unsigned int size_2lines_y = stride_y<<1;
307 unsigned int size_2lines_vu = stride_vu<<1;
308
309 // 2*width*4byte_per_pixel
310 unsigned int size_2lines_bgra = width<<3;
311
312 // start double-buffered processing
313 // 4 lines y
314 spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y, size_4lines_y, RETR_BUF + buf_idx, MFC_GET_CMD);
315 // 2 lines v
316 spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD);
317 // 2 lines u
318 spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD);
319
320 // Wait for these transfers to be completed
321 DMA_WAIT_TAG((RETR_BUF + buf_idx));
322
323 unsigned int i;
324 for(i=0; i < (height>>2)-1; i++) {
325 buf_idx^=1;
326 // 4 lines y
327 spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y+size_4lines_y, size_4lines_y, RETR_BUF + buf_idx, MFC_GET_CMD);
328 deprintf("4lines = %d\n", size_4lines_y);
329 // 2 lines v
330 spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v+size_2lines_vu, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD);
331 deprintf("2lines = %d\n", size_2lines_vu);
332 // 2 lines u
333 spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u+size_2lines_vu, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD);
334 deprintf("2lines = %d\n", size_2lines_vu);
335
336 DMA_WAIT_TAG((RETR_BUF + buf_idx));
337
338 buf_idx^=1;
339
340 // Convert YUV to BGRA, store it back (first two lines)
341 yuv_to_rgb_w32_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width);
342
343 // Next two lines
344 yuv_to_rgb_w32_line(y_plane[buf_idx] + size_2lines_y,
345 v_plane[buf_idx] + stride_vu,
346 u_plane[buf_idx] + stride_vu,
347 bgra + size_2lines_bgra,
348 width);
349
350 // Wait for previous storing transfer to be completed
351 DMA_WAIT_TAG(STR_BUF);
352
353 // Store converted lines in two steps->max transfer size 16384
354 spu_mfcdma32(bgra, (unsigned int)ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
355 ram_addr_bgra += size_2lines_bgra;
356 spu_mfcdma32(bgra + size_2lines_bgra, (unsigned int)ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
357 ram_addr_bgra += size_2lines_bgra;
358
359 // Move 4 lines
360 ram_addr_y += size_4lines_y;
361 ram_addr_v += size_2lines_vu;
362 ram_addr_u += size_2lines_vu;
363
364 buf_idx^=1;
365 }
366
367 // Convert YUV to BGRA, store it back (first two lines)
368 yuv_to_rgb_w32_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width);
369
370 // Next two lines
371 yuv_to_rgb_w32_line(y_plane[buf_idx] + size_2lines_y,
372 v_plane[buf_idx] + stride_vu,
373 u_plane[buf_idx] + stride_vu,
374 bgra + size_2lines_bgra,
375 width);
376
377 // Wait for previous storing transfer to be completed
378 DMA_WAIT_TAG(STR_BUF);
379 spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
380 ram_addr_bgra += size_2lines_bgra;
381 spu_mfcdma32(bgra + size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD);
382
383 // Wait for previous storing transfer to be completed
384 DMA_WAIT_TAG(STR_BUF);
385 }
386
387
388 /* Some vectors needed by the yuv 2 rgb conversion algorithm */
389 const vector float vec_minus_128 = { -128.0f, -128.0f, -128.0f, -128.0f };
390 const vector unsigned char vec_null = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
391 const vector unsigned char vec_char2int_first = { 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x13 };
392 const vector unsigned char vec_char2int_second = { 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x17 };
393 const vector unsigned char vec_char2int_third = { 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x1B };
394 const vector unsigned char vec_char2int_fourth = { 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x1F };
395
396 const vector float vec_R_precalc_coeff = {1.403f, 1.403f, 1.403f, 1.403f};
397 const vector float vec_Gu_precalc_coeff = {-0.344f, -0.344f, -0.344f, -0.344f};
398 const vector float vec_Gv_precalc_coeff = {-0.714f, -0.714f, -0.714f, -0.714f};
399 const vector float vec_B_precalc_coeff = {1.773f, 1.773f, 1.773f, 1.773f};
400
401 const vector unsigned int vec_alpha = { 255 << 24, 255 << 24, 255 << 24, 255 << 24 };
402
403 const vector unsigned char vec_select_floats_upper = { 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x04, 0x05, 0x06, 0x07 };
404 const vector unsigned char vec_select_floats_lower = { 0x08, 0x09, 0x0A, 0x0B, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x0C, 0x0D, 0x0E, 0x0F };
405
406
407 /*
408 * yuv_to_rgb_w16()
409 *
410 * processes to line of yuv-input, width has to be a multiple of 16
411 * two lines of yuv are taken as input
412 *
413 * @param y_addr address of the y plane in local store
414 * @param v_addr address of the v plane in local store
415 * @param u_addr address of the u plane in local store
416 * @param bgra_addr_ address of the bgra output buffer
417 * @param width the width in pixel
418 */
419 void yuv_to_rgb_w16_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_, unsigned int width) {
420 // each pixel is stored as an integer
421 unsigned int* bgra_addr = (unsigned int*) bgra_addr_;
422
423 unsigned int x;
424 for(x = 0; x < width; x+=2) {
425 // Gehe zweischrittig durch die zeile, da jeder u und v wert fuer 4 pixel(zwei hoch, zwei breit) gilt
426 const unsigned char Y_1 = *(y_addr + x);
427 const unsigned char Y_2 = *(y_addr + x + 1);
428 const unsigned char Y_3 = *(y_addr + x + width);
429 const unsigned char Y_4 = *(y_addr + x + width + 1);
430 const unsigned char U = *(u_addr + (x >> 1));
431 const unsigned char V = *(v_addr + (x >> 1));
432
433 float V_minus_128 = (float)((float)V - 128.0f);
434 float U_minus_128 = (float)((float)U - 128.0f);
435
436 float R_precalculate = 1.403f * V_minus_128;
437 float G_precalculate = -(0.344f * U_minus_128 + 0.714f * V_minus_128);
438 float B_precalculate = 1.773f * U_minus_128;
439
440 const unsigned char R_1 = float_to_char((Y_1 + R_precalculate));
441 const unsigned char R_2 = float_to_char((Y_2 + R_precalculate));
442 const unsigned char R_3 = float_to_char((Y_3 + R_precalculate));
443 const unsigned char R_4 = float_to_char((Y_4 + R_precalculate));
444 const unsigned char G_1 = float_to_char((Y_1 + G_precalculate));
445 const unsigned char G_2 = float_to_char((Y_2 + G_precalculate));
446 const unsigned char G_3 = float_to_char((Y_3 + G_precalculate));
447 const unsigned char G_4 = float_to_char((Y_4 + G_precalculate));
448 const unsigned char B_1 = float_to_char((Y_1 + B_precalculate));
449 const unsigned char B_2 = float_to_char((Y_2 + B_precalculate));
450 const unsigned char B_3 = float_to_char((Y_3 + B_precalculate));
451 const unsigned char B_4 = float_to_char((Y_4 + B_precalculate));
452
453 *(bgra_addr + x) = (B_1 << 0)| (G_1 << 8) | (R_1 << 16) | (255 << 24);
454 *(bgra_addr + x + 1) = (B_2 << 0)| (G_2 << 8) | (R_2 << 16) | (255 << 24);
455 *(bgra_addr + x + width) = (B_3 << 0)| (G_3 << 8) | (R_3 << 16) | (255 << 24);
456 *(bgra_addr + x + width + 1) = (B_4 << 0)| (G_4 << 8) | (R_4 << 16) | (255 << 24);
457 }
458 }
459
460
461 /*
462 * yuv_to_rgb_w32()
463 *
464 * processes to line of yuv-input, width has to be a multiple of 32
465 * two lines of yuv are taken as input
466 *
467 * @param y_addr address of the y plane in local store
468 * @param v_addr address of the v plane in local store
469 * @param u_addr address of the u plane in local store
470 * @param bgra_addr_ address of the bgra output buffer
471 * @param width the width in pixel
472 */
473 void yuv_to_rgb_w32_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_, unsigned int width) {
474 // each pixel is stored as an integer
475 unsigned int* bgra_addr = (unsigned int*) bgra_addr_;
476
477 unsigned int x;
478 for(x = 0; x < width; x+=32) {
479 // Gehe zweischrittig durch die zeile, da jeder u und v wert fuer 4 pixel(zwei hoch, zwei breit) gilt
480
481 const vector unsigned char vchar_Y_1 = *((vector unsigned char*)(y_addr + x));
482 const vector unsigned char vchar_Y_2 = *((vector unsigned char*)(y_addr + x + 16));
483 const vector unsigned char vchar_Y_3 = *((vector unsigned char*)(y_addr + x + width));
484 const vector unsigned char vchar_Y_4 = *((vector unsigned char*)(y_addr + x + width + 16));
485 const vector unsigned char vchar_U = *((vector unsigned char*)(u_addr + (x >> 1)));
486 const vector unsigned char vchar_V = *((vector unsigned char*)(v_addr + (x >> 1)));
487
488 const vector float vfloat_U_1 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_first), 0),vec_minus_128);
489 const vector float vfloat_U_2 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_second), 0),vec_minus_128);
490 const vector float vfloat_U_3 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_third), 0),vec_minus_128);
491 const vector float vfloat_U_4 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_fourth), 0),vec_minus_128);
492
493 const vector float vfloat_V_1 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_first), 0),vec_minus_128);
494 const vector float vfloat_V_2 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_second), 0),vec_minus_128);
495 const vector float vfloat_V_3 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_third), 0),vec_minus_128);
496 const vector float vfloat_V_4 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_fourth), 0),vec_minus_128);
497
498 vector float Y_1 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_first), 0);
499 vector float Y_2 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_second), 0);
500 vector float Y_3 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_third), 0);
501 vector float Y_4 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_fourth), 0);
502 vector float Y_5 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_first), 0);
503 vector float Y_6 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_second), 0);
504 vector float Y_7 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_third), 0);
505 vector float Y_8 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_fourth), 0);
506 vector float Y_9 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_first), 0);
507 vector float Y_10 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_second), 0);
508 vector float Y_11 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_third), 0);
509 vector float Y_12 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_fourth), 0);
510 vector float Y_13 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_first), 0);
511 vector float Y_14 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_second), 0);
512 vector float Y_15 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_third), 0);
513 vector float Y_16 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_fourth), 0);
514
515 const vector float R1a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_1);
516 const vector float R2a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_2);
517 const vector float R3a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_3);
518 const vector float R4a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_4);
519
520 const vector float R1_precalculate = spu_shuffle(R1a_precalculate, R1a_precalculate, vec_select_floats_upper);
521 const vector float R2_precalculate = spu_shuffle(R1a_precalculate, R1a_precalculate, vec_select_floats_lower);
522 const vector float R3_precalculate = spu_shuffle(R2a_precalculate, R2a_precalculate, vec_select_floats_upper);
523 const vector float R4_precalculate = spu_shuffle(R2a_precalculate, R2a_precalculate, vec_select_floats_lower);
524 const vector float R5_precalculate = spu_shuffle(R3a_precalculate, R3a_precalculate, vec_select_floats_upper);
525 const vector float R6_precalculate = spu_shuffle(R3a_precalculate, R3a_precalculate, vec_select_floats_lower);
526 const vector float R7_precalculate = spu_shuffle(R4a_precalculate, R4a_precalculate, vec_select_floats_upper);
527 const vector float R8_precalculate = spu_shuffle(R4a_precalculate, R4a_precalculate, vec_select_floats_lower);
528
529
530 const vector float G1a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_1, spu_mul(vfloat_V_1, vec_Gv_precalc_coeff));
531 const vector float G2a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_2, spu_mul(vfloat_V_2, vec_Gv_precalc_coeff));
532 const vector float G3a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_3, spu_mul(vfloat_V_3, vec_Gv_precalc_coeff));
533 const vector float G4a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_4, spu_mul(vfloat_V_4, vec_Gv_precalc_coeff));
534
535 const vector float G1_precalculate = spu_shuffle(G1a_precalculate, G1a_precalculate, vec_select_floats_upper);
536 const vector float G2_precalculate = spu_shuffle(G1a_precalculate, G1a_precalculate, vec_select_floats_lower);
537 const vector float G3_precalculate = spu_shuffle(G2a_precalculate, G2a_precalculate, vec_select_floats_upper);
538 const vector float G4_precalculate = spu_shuffle(G2a_precalculate, G2a_precalculate, vec_select_floats_lower);
539 const vector float G5_precalculate = spu_shuffle(G3a_precalculate, G3a_precalculate, vec_select_floats_upper);
540 const vector float G6_precalculate = spu_shuffle(G3a_precalculate, G3a_precalculate, vec_select_floats_lower);
541 const vector float G7_precalculate = spu_shuffle(G4a_precalculate, G4a_precalculate, vec_select_floats_upper);
542 const vector float G8_precalculate = spu_shuffle(G4a_precalculate, G4a_precalculate, vec_select_floats_lower);
543
544
545 const vector float B1a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_1);
546 const vector float B2a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_2);
547 const vector float B3a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_3);
548 const vector float B4a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_4);
549
550 const vector float B1_precalculate = spu_shuffle(B1a_precalculate, B1a_precalculate, vec_select_floats_upper);
551 const vector float B2_precalculate = spu_shuffle(B1a_precalculate, B1a_precalculate, vec_select_floats_lower);
552 const vector float B3_precalculate = spu_shuffle(B2a_precalculate, B2a_precalculate, vec_select_floats_upper);
553 const vector float B4_precalculate = spu_shuffle(B2a_precalculate, B2a_precalculate, vec_select_floats_lower);
554 const vector float B5_precalculate = spu_shuffle(B3a_precalculate, B3a_precalculate, vec_select_floats_upper);
555 const vector float B6_precalculate = spu_shuffle(B3a_precalculate, B3a_precalculate, vec_select_floats_lower);
556 const vector float B7_precalculate = spu_shuffle(B4a_precalculate, B4a_precalculate, vec_select_floats_upper);
557 const vector float B8_precalculate = spu_shuffle(B4a_precalculate, B4a_precalculate, vec_select_floats_lower);
558
559
560 const vector unsigned int R_1 = vfloat_to_vuint(spu_add( Y_1, R1_precalculate));
561 const vector unsigned int R_2 = vfloat_to_vuint(spu_add( Y_2, R2_precalculate));
562 const vector unsigned int R_3 = vfloat_to_vuint(spu_add( Y_3, R3_precalculate));
563 const vector unsigned int R_4 = vfloat_to_vuint(spu_add( Y_4, R4_precalculate));
564 const vector unsigned int R_5 = vfloat_to_vuint(spu_add( Y_5, R5_precalculate));
565 const vector unsigned int R_6 = vfloat_to_vuint(spu_add( Y_6, R6_precalculate));
566 const vector unsigned int R_7 = vfloat_to_vuint(spu_add( Y_7, R7_precalculate));
567 const vector unsigned int R_8 = vfloat_to_vuint(spu_add( Y_8, R8_precalculate));
568 const vector unsigned int R_9 = vfloat_to_vuint(spu_add( Y_9, R1_precalculate));
569 const vector unsigned int R_10 = vfloat_to_vuint(spu_add(Y_10, R2_precalculate));
570 const vector unsigned int R_11 = vfloat_to_vuint(spu_add(Y_11, R3_precalculate));
571 const vector unsigned int R_12 = vfloat_to_vuint(spu_add(Y_12, R4_precalculate));
572 const vector unsigned int R_13 = vfloat_to_vuint(spu_add(Y_13, R5_precalculate));
573 const vector unsigned int R_14 = vfloat_to_vuint(spu_add(Y_14, R6_precalculate));
574 const vector unsigned int R_15 = vfloat_to_vuint(spu_add(Y_15, R7_precalculate));
575 const vector unsigned int R_16 = vfloat_to_vuint(spu_add(Y_16, R8_precalculate));
576
577 const vector unsigned int G_1 = vfloat_to_vuint(spu_add( Y_1, G1_precalculate));
578 const vector unsigned int G_2 = vfloat_to_vuint(spu_add( Y_2, G2_precalculate));
579 const vector unsigned int G_3 = vfloat_to_vuint(spu_add( Y_3, G3_precalculate));
580 const vector unsigned int G_4 = vfloat_to_vuint(spu_add( Y_4, G4_precalculate));
581 const vector unsigned int G_5 = vfloat_to_vuint(spu_add( Y_5, G5_precalculate));
582 const vector unsigned int G_6 = vfloat_to_vuint(spu_add( Y_6, G6_precalculate));
583 const vector unsigned int G_7 = vfloat_to_vuint(spu_add( Y_7, G7_precalculate));
584 const vector unsigned int G_8 = vfloat_to_vuint(spu_add( Y_8, G8_precalculate));
585 const vector unsigned int G_9 = vfloat_to_vuint(spu_add( Y_9, G1_precalculate));
586 const vector unsigned int G_10 = vfloat_to_vuint(spu_add(Y_10, G2_precalculate));
587 const vector unsigned int G_11 = vfloat_to_vuint(spu_add(Y_11, G3_precalculate));
588 const vector unsigned int G_12 = vfloat_to_vuint(spu_add(Y_12, G4_precalculate));
589 const vector unsigned int G_13 = vfloat_to_vuint(spu_add(Y_13, G5_precalculate));
590 const vector unsigned int G_14 = vfloat_to_vuint(spu_add(Y_14, G6_precalculate));
591 const vector unsigned int G_15 = vfloat_to_vuint(spu_add(Y_15, G7_precalculate));
592 const vector unsigned int G_16 = vfloat_to_vuint(spu_add(Y_16, G8_precalculate));
593
594 const vector unsigned int B_1 = vfloat_to_vuint(spu_add( Y_1, B1_precalculate));
595 const vector unsigned int B_2 = vfloat_to_vuint(spu_add( Y_2, B2_precalculate));
596 const vector unsigned int B_3 = vfloat_to_vuint(spu_add( Y_3, B3_precalculate));
597 const vector unsigned int B_4 = vfloat_to_vuint(spu_add( Y_4, B4_precalculate));
598 const vector unsigned int B_5 = vfloat_to_vuint(spu_add( Y_5, B5_precalculate));
599 const vector unsigned int B_6 = vfloat_to_vuint(spu_add( Y_6, B6_precalculate));
600 const vector unsigned int B_7 = vfloat_to_vuint(spu_add( Y_7, B7_precalculate));
601 const vector unsigned int B_8 = vfloat_to_vuint(spu_add( Y_8, B8_precalculate));
602 const vector unsigned int B_9 = vfloat_to_vuint(spu_add( Y_9, B1_precalculate));
603 const vector unsigned int B_10 = vfloat_to_vuint(spu_add(Y_10, B2_precalculate));
604 const vector unsigned int B_11 = vfloat_to_vuint(spu_add(Y_11, B3_precalculate));
605 const vector unsigned int B_12 = vfloat_to_vuint(spu_add(Y_12, B4_precalculate));
606 const vector unsigned int B_13 = vfloat_to_vuint(spu_add(Y_13, B5_precalculate));
607 const vector unsigned int B_14 = vfloat_to_vuint(spu_add(Y_14, B6_precalculate));
608 const vector unsigned int B_15 = vfloat_to_vuint(spu_add(Y_15, B7_precalculate));
609 const vector unsigned int B_16 = vfloat_to_vuint(spu_add(Y_16, B8_precalculate));
610
611 *((vector unsigned int*)(bgra_addr + x)) = spu_or(spu_or(vec_alpha, B_1), spu_or(spu_slqwbyte( R_1, 2),spu_slqwbyte(G_1, 1)));
612 *((vector unsigned int*)(bgra_addr + x + 4)) = spu_or(spu_or(vec_alpha, B_2), spu_or(spu_slqwbyte( R_2, 2),spu_slqwbyte(G_2, 1)));
613 *((vector unsigned int*)(bgra_addr + x + 8)) = spu_or(spu_or(vec_alpha, B_3), spu_or(spu_slqwbyte( R_3, 2),spu_slqwbyte(G_3, 1)));
614 *((vector unsigned int*)(bgra_addr + x + 12)) = spu_or(spu_or(vec_alpha, B_4), spu_or(spu_slqwbyte( R_4, 2),spu_slqwbyte(G_4, 1)));
615 *((vector unsigned int*)(bgra_addr + x + 16)) = spu_or(spu_or(vec_alpha, B_5), spu_or(spu_slqwbyte( R_5, 2),spu_slqwbyte(G_5, 1)));
616 *((vector unsigned int*)(bgra_addr + x + 20)) = spu_or(spu_or(vec_alpha, B_6), spu_or(spu_slqwbyte( R_6, 2),spu_slqwbyte(G_6, 1)));
617 *((vector unsigned int*)(bgra_addr + x + 24)) = spu_or(spu_or(vec_alpha, B_7), spu_or(spu_slqwbyte( R_7, 2),spu_slqwbyte(G_7, 1)));
618 *((vector unsigned int*)(bgra_addr + x + 28)) = spu_or(spu_or(vec_alpha, B_8), spu_or(spu_slqwbyte( R_8, 2),spu_slqwbyte(G_8, 1)));
619 *((vector unsigned int*)(bgra_addr + x + width)) = spu_or(spu_or(vec_alpha, B_9), spu_or(spu_slqwbyte( R_9, 2),spu_slqwbyte(G_9, 1)));
620 *((vector unsigned int*)(bgra_addr + x + width + 4)) = spu_or(spu_or(vec_alpha, B_10), spu_or(spu_slqwbyte(R_10, 2),spu_slqwbyte(G_10, 1)));
621 *((vector unsigned int*)(bgra_addr + x + width + 8)) = spu_or(spu_or(vec_alpha, B_11), spu_or(spu_slqwbyte(R_11, 2),spu_slqwbyte(G_11, 1)));
622 *((vector unsigned int*)(bgra_addr + x + width + 12)) = spu_or(spu_or(vec_alpha, B_12), spu_or(spu_slqwbyte(R_12, 2),spu_slqwbyte(G_12, 1)));
623 *((vector unsigned int*)(bgra_addr + x + width + 16)) = spu_or(spu_or(vec_alpha, B_13), spu_or(spu_slqwbyte(R_13, 2),spu_slqwbyte(G_13, 1)));
624 *((vector unsigned int*)(bgra_addr + x + width + 20)) = spu_or(spu_or(vec_alpha, B_14), spu_or(spu_slqwbyte(R_14, 2),spu_slqwbyte(G_14, 1)));
625 *((vector unsigned int*)(bgra_addr + x + width + 24)) = spu_or(spu_or(vec_alpha, B_15), spu_or(spu_slqwbyte(R_15, 2),spu_slqwbyte(G_15, 1)));
626 *((vector unsigned int*)(bgra_addr + x + width + 28)) = spu_or(spu_or(vec_alpha, B_16), spu_or(spu_slqwbyte(R_16, 2),spu_slqwbyte(G_16, 1)));
627 }
628 }
629