Mercurial > sdl-ios-xcode
annotate src/thread/generic/SDL_syscond.c @ 1287:15a89a0c52bf
Date: Tue, 15 Feb 2005 21:28:48 +0900 (JST)
From: "Michael Leonhard"
Subject: [SDL] resize bug on Win32 and patch
This is my first post to this mailing list. In this email I will detail a
bug in the behavior of resizable SDL windows on Win32. Then I will
explain the solution and provide a patch.
Symptoms:
Under Windows, an SDL display created with the SDL_RESIZABLE flag exhibits
quirky behavior when being maximized. The window is resized to the proper
size, but it is shifted upwards about half the height of the title bar.
Similarly, a window whose origin is above the top of the screen will
spontaneously move its upper-left origin upon being resized. After two
such resize-induced moves, the title bar will be entirely off the top edge
of the screen. Subsequently, when the mouse is clicked and released on
the window border, the window will shrink its height spontaneously. This
height shrinkage occurs even if the user did not resize the border.
To observe this curious situation, please invoke:
SDL-1.2.8/test/testwm.exe -resize
Cause:
A pair of integers, SDL_windowX and SDL_windowY, are defined in
video/wincommon/SDL_sysevents.c. They are used by the DirectX video
driver and the DIB video driver:
video/windx5/SDL_dx5video.c
video/windib/SDL_dibvideo.c
As I understand the source code, the primary use of these variables is to
create a rectangle that represents the surface area in CLIENT SPACE.
Client space refers to a coordinate system that originates at the upper
left corner of a Win32 Window's drawable area. This is just inside the
window border and title bar. This client space rectangle, called bounds,
is subsequently converted to screen space with a call to
AdjustWindowRectEx. The problem is found in SDL's handling of the
WM_WINDOWPOSCHANGED message. According to MSDN,
"The WM_WINDOWPOSCHANGED message is sent to a window whose
size, position, or place in the Z order has changed as a
result of a call to the SetWindowPos function or another
window-management function."
I have confirmed that this message is indeed being sent to the SDL window
when the mouse is clicked on the window border, even if the window border
is not dragged.
In video/wincommon/SDL_sysevents.c, on line 464, in response to the
WM_WINDOWPOSCHANGED message, the (potentially) new client rectangle is
obtained. This rectangle is translated into screen coordinates and THEN
assigned to the SDL_windowX and Y variables. Thus screen coordinates are
being assigned to client coordinate variables. Once this is understood,
the solution is apparent: assign SDL_windowX and Y before translating the
rectangle to screen coordinates. This is accomplished by the following
patch.
-Mike_L
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 29 Jan 2006 08:50:06 +0000 |
parents | b8d311d90021 |
children | c9b51268668f |
rev | line source |
---|---|
0 | 1 /* |
2 SDL - Simple DirectMedia Layer | |
769
b8d311d90021
Updated copyright information for 2004 (Happy New Year!)
Sam Lantinga <slouken@libsdl.org>
parents:
297
diff
changeset
|
3 Copyright (C) 1997-2004 Sam Lantinga |
0 | 4 |
5 This library is free software; you can redistribute it and/or | |
6 modify it under the terms of the GNU Library General Public | |
7 License as published by the Free Software Foundation; either | |
8 version 2 of the License, or (at your option) any later version. | |
9 | |
10 This library is distributed in the hope that it will be useful, | |
11 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 Library General Public License for more details. | |
14 | |
15 You should have received a copy of the GNU Library General Public | |
16 License along with this library; if not, write to the Free | |
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
18 | |
19 Sam Lantinga | |
252
e8157fcb3114
Updated the source with the correct e-mail address
Sam Lantinga <slouken@libsdl.org>
parents:
0
diff
changeset
|
20 slouken@libsdl.org |
0 | 21 */ |
22 | |
23 #ifdef SAVE_RCSID | |
24 static char rcsid = | |
25 "@(#) $Id$"; | |
26 #endif | |
27 | |
28 /* An implementation of condition variables using semaphores and mutexes */ | |
29 /* | |
30 This implementation borrows heavily from the BeOS condition variable | |
31 implementation, written by Christopher Tate and Owen Smith. Thanks! | |
32 */ | |
33 | |
34 #include <stdio.h> | |
35 #include <stdlib.h> | |
36 | |
37 #include "SDL_error.h" | |
38 #include "SDL_thread.h" | |
39 | |
40 struct SDL_cond | |
41 { | |
42 SDL_mutex *lock; | |
43 int waiting; | |
44 int signals; | |
45 SDL_sem *wait_sem; | |
46 SDL_sem *wait_done; | |
47 }; | |
48 | |
49 /* Create a condition variable */ | |
50 SDL_cond * SDL_CreateCond(void) | |
51 { | |
52 SDL_cond *cond; | |
53 | |
54 cond = (SDL_cond *) malloc(sizeof(SDL_cond)); | |
55 if ( cond ) { | |
56 cond->lock = SDL_CreateMutex(); | |
57 cond->wait_sem = SDL_CreateSemaphore(0); | |
58 cond->wait_done = SDL_CreateSemaphore(0); | |
59 cond->waiting = cond->signals = 0; | |
60 if ( ! cond->lock || ! cond->wait_sem || ! cond->wait_done ) { | |
61 SDL_DestroyCond(cond); | |
62 cond = NULL; | |
63 } | |
64 } else { | |
65 SDL_OutOfMemory(); | |
66 } | |
67 return(cond); | |
68 } | |
69 | |
70 /* Destroy a condition variable */ | |
71 void SDL_DestroyCond(SDL_cond *cond) | |
72 { | |
73 if ( cond ) { | |
74 if ( cond->wait_sem ) { | |
75 SDL_DestroySemaphore(cond->wait_sem); | |
76 } | |
77 if ( cond->wait_done ) { | |
78 SDL_DestroySemaphore(cond->wait_done); | |
79 } | |
80 if ( cond->lock ) { | |
81 SDL_DestroyMutex(cond->lock); | |
82 } | |
83 free(cond); | |
84 } | |
85 } | |
86 | |
87 /* Restart one of the threads that are waiting on the condition variable */ | |
88 int SDL_CondSignal(SDL_cond *cond) | |
89 { | |
90 if ( ! cond ) { | |
91 SDL_SetError("Passed a NULL condition variable"); | |
92 return -1; | |
93 } | |
94 | |
95 /* If there are waiting threads not already signalled, then | |
96 signal the condition and wait for the thread to respond. | |
97 */ | |
98 SDL_LockMutex(cond->lock); | |
99 if ( cond->waiting > cond->signals ) { | |
100 ++cond->signals; | |
101 SDL_SemPost(cond->wait_sem); | |
102 SDL_UnlockMutex(cond->lock); | |
103 SDL_SemWait(cond->wait_done); | |
104 } else { | |
105 SDL_UnlockMutex(cond->lock); | |
106 } | |
107 | |
108 return 0; | |
109 } | |
110 | |
111 /* Restart all threads that are waiting on the condition variable */ | |
112 int SDL_CondBroadcast(SDL_cond *cond) | |
113 { | |
114 if ( ! cond ) { | |
115 SDL_SetError("Passed a NULL condition variable"); | |
116 return -1; | |
117 } | |
118 | |
119 /* If there are waiting threads not already signalled, then | |
120 signal the condition and wait for the thread to respond. | |
121 */ | |
122 SDL_LockMutex(cond->lock); | |
123 if ( cond->waiting > cond->signals ) { | |
124 int i, num_waiting; | |
125 | |
126 num_waiting = (cond->waiting - cond->signals); | |
127 cond->signals = cond->waiting; | |
128 for ( i=0; i<num_waiting; ++i ) { | |
129 SDL_SemPost(cond->wait_sem); | |
130 } | |
131 /* Now all released threads are blocked here, waiting for us. | |
132 Collect them all (and win fabulous prizes!) :-) | |
133 */ | |
134 SDL_UnlockMutex(cond->lock); | |
135 for ( i=0; i<num_waiting; ++i ) { | |
136 SDL_SemWait(cond->wait_done); | |
137 } | |
138 } else { | |
139 SDL_UnlockMutex(cond->lock); | |
140 } | |
141 | |
142 return 0; | |
143 } | |
144 | |
145 /* Wait on the condition variable for at most 'ms' milliseconds. | |
146 The mutex must be locked before entering this function! | |
147 The mutex is unlocked during the wait, and locked again after the wait. | |
148 | |
149 Typical use: | |
150 | |
151 Thread A: | |
152 SDL_LockMutex(lock); | |
153 while ( ! condition ) { | |
154 SDL_CondWait(cond); | |
155 } | |
156 SDL_UnlockMutex(lock); | |
157 | |
158 Thread B: | |
159 SDL_LockMutex(lock); | |
160 ... | |
161 condition = true; | |
162 ... | |
163 SDL_UnlockMutex(lock); | |
164 */ | |
165 int SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms) | |
166 { | |
167 int retval; | |
168 | |
169 if ( ! cond ) { | |
170 SDL_SetError("Passed a NULL condition variable"); | |
171 return -1; | |
172 } | |
173 | |
174 /* Obtain the protection mutex, and increment the number of waiters. | |
175 This allows the signal mechanism to only perform a signal if there | |
176 are waiting threads. | |
177 */ | |
178 SDL_LockMutex(cond->lock); | |
179 ++cond->waiting; | |
180 SDL_UnlockMutex(cond->lock); | |
181 | |
182 /* Unlock the mutex, as is required by condition variable semantics */ | |
183 SDL_UnlockMutex(mutex); | |
184 | |
185 /* Wait for a signal */ | |
186 if ( ms == SDL_MUTEX_MAXWAIT ) { | |
187 retval = SDL_SemWait(cond->wait_sem); | |
188 } else { | |
189 retval = SDL_SemWaitTimeout(cond->wait_sem, ms); | |
190 } | |
191 | |
192 /* Let the signaler know we have completed the wait, otherwise | |
193 the signaler can race ahead and get the condition semaphore | |
194 if we are stopped between the mutex unlock and semaphore wait, | |
195 giving a deadlock. See the following URL for details: | |
196 http://www-classic.be.com/aboutbe/benewsletter/volume_III/Issue40.html | |
197 */ | |
198 SDL_LockMutex(cond->lock); | |
199 if ( cond->signals > 0 ) { | |
200 /* If we timed out, we need to eat a condition signal */ | |
201 if ( retval > 0 ) { | |
202 SDL_SemWait(cond->wait_sem); | |
203 } | |
204 /* We always notify the signal thread that we are done */ | |
205 SDL_SemPost(cond->wait_done); | |
206 | |
207 /* Signal handshake complete */ | |
208 --cond->signals; | |
209 } | |
210 --cond->waiting; | |
211 SDL_UnlockMutex(cond->lock); | |
212 | |
213 /* Lock the mutex, as is required by condition variable semantics */ | |
214 SDL_LockMutex(mutex); | |
215 | |
216 return retval; | |
217 } | |
218 | |
219 /* Wait on the condition variable forever */ | |
220 int SDL_CondWait(SDL_cond *cond, SDL_mutex *mutex) | |
221 { | |
222 return SDL_CondWaitTimeout(cond, mutex, SDL_MUTEX_MAXWAIT); | |
223 } |