Mercurial > pylearn
changeset 1299:e78ced0d6540
merge
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 01 Oct 2010 12:29:04 -0400 |
parents | cba5a348a732 (current diff) 24890ca1d96b (diff) |
children | cc1c5720eeca a8f909502886 |
files | doc/v2_planning/coding_style.txt |
diffstat | 3 files changed, 37 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/v2_planning/coding_style.txt Fri Oct 01 12:27:48 2010 -0400 +++ b/doc/v2_planning/coding_style.txt Fri Oct 01 12:29:04 2010 -0400 @@ -114,6 +114,10 @@ from foo import Bar, Blah when imported stuff is re-used multiple times in the same file, and there is no ambiguity. + DWF: One exception I'd like to propose to the "import A as B" moratorium + is that we adopt the "import numpy as np" standard that's used in + NumPy and SciPy itself. For NumPy heavy code this really cuts down + on clutter, without significant impact on readability (IMHO). * Imports should usually be on separate lines. OD: I would add an exception, saying it is ok to group multiple imports
--- a/pylearn/formulas/costs.py Fri Oct 01 12:27:48 2010 -0400 +++ b/pylearn/formulas/costs.py Fri Oct 01 12:29:04 2010 -0400 @@ -1,5 +1,5 @@ """ -This script defines a few often used cost functions. +Common training criteria. """ import theano import theano.tensor as T @@ -10,13 +10,15 @@ """ Compute the crossentropy of binary output wrt binary target. .. math:: - L_{CE} \equiv t\log(o) + (1-t)\log(1-o) + L_{CE} \equiv t\log(o) + (1-t)\log(1-o) :type output: Theano variable :param output: Binary output or prediction :math:`\in[0,1]` :type target: Theano variable :param target: Binary target usually :math:`\in\{0,1\}` """ - return -(target * tensor.log(output) + (1.0 - target) * tensor.log(1.0 - output)) + return -(target * T.log(output) + (1.0 - target) * T.log(1.0 - output)) +# This file seems like it has some overlap with theano.tensor.nnet. Which functions should go +# in which file?
--- a/pylearn/formulas/noise.py Fri Oct 01 12:27:48 2010 -0400 +++ b/pylearn/formulas/noise.py Fri Oct 01 12:29:04 2010 -0400 @@ -1,12 +1,14 @@ """ +Noise functions used to train Denoising Auto-Associators. -This script define the different symbolic noise functions. +Functions in this module often include a `noise_lvl` argument that controls the amount of noise +that the function applies. The noise contract is simple: noise_lvl is a symbolic variable going from 0 to 1. -0: no changement. -1: max noise. +0: no change. +1: maximum noise. """ import theano -from tags import tags +import tags s=""" * A latex mathematical description of the formulas(for picture representation in generated documentation) * Tags(for searching): @@ -19,35 +21,44 @@ * Tell the domaine, range of the input/output(range should use the english notation of including or excluding) """ -@tags('noise','binomial','salt') -def binomial_noise(theano_rng,inp,noise_lvl): - """ This add binomial noise to inp. Only the salt part of pepper and salt. +@tags.tags('noise','binomial','salt') +def binomial_noise(theano_rng,input,noise_lvl): + """ + Return `inp` with randomly-chosen elements set to zero. + + TODO: MATH DEFINITION - :type inp: Theano Variable - :param inp: The input that we want to add noise + :type input: Theano tensor variable + :param input: input :type noise_lvl: float - :param noise_lvl: The % of noise. Between 0(no noise) and 1. + :param noise_lvl: The probability of setting each element to zero. """ - return theano_rng.binomial( size = inp.shape, n = 1, p = 1 - noise_lvl, dtype=theano.config.floatX) * inp + mask = theano_rng.binomial( + size = inp.shape, + n = 1, + p = 1 - noise_lvl, + dtype=theano.config.floatX) + # QUESTION: should the dtype not default to the input dtype? + return mask * input -@tags('noise','binomial NLP','pepper','salt') +@tags.tags('noise','binomial NLP','pepper','salt') def pepper_and_salt_noise(theano_rng,inp,noise_lvl): """ This add pepper and salt noise to inp - - :type inp: Theano Variable + + :type inp: Theano variable :param inp: The input that we want to add noise :type noise_lvl: tuple(float,float) - :param noise_lvl: The % of noise for the salt and pepper. Between 0(no noise) and 1. + :param noise_lvl: The %% of noise for the salt and pepper. Between 0 (no noise) and 1. """ return theano_rng.binomial( size = inp.shape, n = 1, p = 1 - noise_lvl[0], dtype=theano.config.floatX) * inp \ + (inp==0) * theano_rng.binomial( size = inp.shape, n = 1, p = noise_lvl[1], dtype=theano.config.floatX) -@tags('noise','gauss','gaussian') +@tags.tags('noise','gauss','gaussian') def gaussian_noise(theano_rng,inp,noise_lvl): """ This add gaussian NLP noise to inp - :type inp: Theano Variable + :type inp: Theano variable :param inp: The input that we want to add noise :type noise_lvl: float :param noise_lvl: The standard deviation of the gaussian.