Mercurial > pylearn
changeset 1308:d5e536338b69
5 activation functions added to formulas
author | Razvan Pascanu <r.pascanu@gmail.com> |
---|---|
date | Tue, 05 Oct 2010 09:57:35 -0400 |
parents | bc41fd23db25 |
children | e5b7a7913329 |
files | pylearn/formulas/activations.py |
diffstat | 1 files changed, 106 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/formulas/activations.py Tue Oct 05 09:57:35 2010 -0400 @@ -0,0 +1,106 @@ +""" +Activation function for artificial neural units. + +""" + +__authors__ = "Razvan Pascanu, .." +__copyright__ = "(c) 2010, Universite de Montreal" +__license__ = "3-clause BSD License" +__contact__ = "Razvan Pascanu <r.pascanu@gmail.com>" + +import theano +import tags + +@tags.tags('activation','softsign') +def softsign_act(input): + """ + Returns a symbolic variable that computes the softsign of ``input``. + + .. math:: + f(input) = \frac{input}{1.0 + |input|} + + :type input: tensor-like + :param input: input tensor to which softsign should be applied + :rtype: Theano variable + :return: tensor obtained after applying the softsign function + + """ + return input/(1.0 + T.abs_(input)) + +@tags.tags('activation','softsign','abs') +def abssoftsign_act(input): + """ + Returns a symbolic variable that computes the absolute value of the + softsign function on the input tensor ``input``. + + .. math:: + f(input) = \left| \frac{input}{1.0 +|input|} \right| + + :type input: tensor-like + :param input: input tensor to which softsign should be applied + :rtype: Tensor variable + :return: tensor obtained by taking the absolute value of softsign + of the input + """ + return T.abs_(input)/(1.0 + T.abs_(input)) + + +@tags.tags('activation','rectifier') +def rectifier_act(input): + """ + Returns a symbolic variable that computes the value of the ``input`` if + and only if it is positive, 0 otherwise. + + .. math:: + f(input) = \left\lbrace \begin{array}{l} + input \quad \text{ if } input > 0 \\ + 0 \quad \text{ else } + \end{array} + \right + + :type input: tensor-like + :param input: input tensor to which the rectifier activation function + will be applied + :rtype: Tensor variable + :return: always positive tensor which equals with the input if it is also + positive or to 0 otherwise + + """ + return input*(input>=0) + +@tags.tags('activation','softplus') +def softplus_act(input): + """ + Returns a symbolic variable that computes the softplus of ``input``. + Note : (TODO) rescale in order to have a steady state regime close to 0 + at initialization. + + .. math:: + f(input) = ln \left( 1 + e^{input} \right) + + :type input: tensor-like + :param input: input tensor to which the softplus should be applied + :rtype: Theano variable + :return: tensor obtained by applying softsign on the input + """ + return theano.tensor.nnet.softplus(input) + +@tags.tags('activation','abs') +def abs_act(input): + """ + Returns the symbolic variable that represents the absolute value of + ``input``. + + .. math:: + f(input) = |input| + + :type input: tensor-like + :param input: input tensor + :rtype: Theano variable + :return: tensor that represents the absolute value of the input + + + """ + return theano.tensor.abs_(input) + +