Mercurial > pylearn
changeset 651:d03b5d8e4bf6
revised classification and LogReg_New
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 04 Feb 2009 20:02:05 -0500 |
parents | 83e8fe9b1c82 |
children | 2704c8688ced 40cae12a9bb8 |
files | pylearn/algorithms/logistic_regression.py |
diffstat | 1 files changed, 36 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/logistic_regression.py Wed Feb 04 18:04:05 2009 -0500 +++ b/pylearn/algorithms/logistic_regression.py Wed Feb 04 20:02:05 2009 -0500 @@ -196,27 +196,49 @@ @staticmethod def xent(p, q): - """The cross-entropy between the prediction from `input`, and the true `target`. + """cross-entropy (row-wise) + + :type p: M x N symbolic matrix (sparse or dense) + + :param p: each row is a true distribution over N things + + :type q: M x N symbolic matrix (sparse or dense) - This function returns a symbolic vector, with the cross-entropy for each row in - `input`. + :param q: each row is an approximating distribution over N things + + :rtype: symbolic vector of length M + + :returns: the cross entropy between each row of p and the corresponding row of q. - Hint: To sum these costs into a scalar value, use "xent(input, target).sum()" + + Hint: To sum row-wise costs into a scalar value, use "xent(p, q).sum()" """ - return p * tensor.log(q) + return (p * tensor.log(q)).sum(axis=1) @staticmethod - def errors(prediction, target): - """The zero-one error of the prediction from `input`, with respect to the true `target`. + def errors(target, prediction): + """classification error (row-wise) + + :type p: M x N symbolic matrix (sparse or dense) + + :param p: each row is a true distribution over N things + + :type q: M x N symbolic matrix (sparse or dense) - This function returns a symbolic vector, with the incorrectness of each prediction - (made row-wise from `input`). + :param q: each row is an approximating distribution over N things + + :rtype: symbolic vector of length M + + :returns: a vector with 0 for every row pair that has a maximum in the same position, + and 1 for every other row pair. + Hint: Count errors with "errors(prediction, target).sum()", and get the error-rate with "errors(prediction, target).mean()" - """ - return tensor.neq(tensor.argmax(prediction), target) + return tensor.neq( + tensor.argmax(prediction, axis=1), + tensor.argmax(target, axis=1)) class LogReg_New(module.FancyModule): """A symbolic module for performing multi-class logistic regression.""" @@ -234,6 +256,7 @@ self.w = w if w is not None else module.Member(T.dmatrix()) self.b = b if b is not None else module.Member(T.dvector()) + def _instance_initialize(self, obj): obj.w = N.zeros((self.n_in, self.n_out)) obj.b = N.zeros(self.n_out) @@ -256,8 +279,8 @@ return tensor.argmax(self.activation(input)) def xent(self, input, target): - return classification.xent(self.softmax(input), target) + return classification.xent(target, self.softmax(input)) def errors(self, input, target): - return classification.errors(self.softmax(input), target) + return classification.errors(target, self.softmax(input))