Mercurial > pylearn
changeset 1179:67f4edabb0cc
Merged
author | Olivier Delalleau <delallea@iro> |
---|---|
date | Fri, 17 Sep 2010 16:23:51 -0400 |
parents | 10bc5ebb5823 (current diff) b699d096e6cc (diff) |
children | 9ebd40d31a1b |
files | doc/v2_planning/API_coding_style.txt doc/v2_planning/coding_style.txt |
diffstat | 6 files changed, 22 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/index.txt Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/index.txt Fri Sep 17 16:23:51 2010 -0400 @@ -27,6 +27,7 @@ * `Formulas <formulas.html>`_ -- Built-in math formulas optimized for speed and robustness * :doc:`io.SeriesTables module <seriestables>` -- Saves error series and other statistics during training * `API <api/>`_ -- The automatically-generated API documentation +* `V2 planning <v2_planning/index.html>`_ -- Some documentation about the planning of our next version of pylearn. You can download the latest `PDF documentation <http://deeplearning.net/software/pylearn/pylearn.pdf>`_, rather than reading it online.
--- a/doc/v2_planning/API_coding_style.txt Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/v2_planning/API_coding_style.txt Fri Sep 17 16:23:51 2010 -0400 @@ -30,12 +30,12 @@ The four main documents describing our Python coding guidelines are: * `PEP 8 -- Style Guide for Python Code <http://www.python.org/dev/peps/pep-0008>`_ + * `Google Python Style Guide + <http://google-styleguide.googlecode.com/svn/trunk/pyguide.html>`_ * `PEP 257 -- Docstring Conventions <http://www.python.org/dev/peps/pep-0257>`_ * `Numpy Docstring Standard <http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard>`_ - * `Google Python Style Guide - <http://google-styleguide.googlecode.com/svn/trunk/pyguide.html>`_ However, there are a few points mentioned in those documents that we decided @@ -49,7 +49,8 @@ .. code-block:: python # Good. - """This is a multi-line docstring. + """ + This is a multi-line docstring. Which means it has more than one line. """ @@ -308,6 +309,7 @@ if (cond_1 and cond_2 and cond_3): + ... # Bad. if cond_1 and \
--- a/doc/v2_planning/API_learner.txt Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/v2_planning/API_learner.txt Fri Sep 17 16:23:51 2010 -0400 @@ -1,3 +1,8 @@ +.. _v2planning_learner: + +Learner API +=========== + # A list of "task types" ''' @@ -37,6 +42,7 @@ Notes on metrics & statistics: - some are applied to an example, others on a batch - most statistics are on the dataset + '''
--- a/doc/v2_planning/coding_style.txt Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/v2_planning/coding_style.txt Fri Sep 17 16:23:51 2010 -0400 @@ -63,7 +63,7 @@ - You cannot use a **kw argument in your constructor for your own selfish purpose. - I have no clue whether one could do this with multiple inheritance. - - More? + - Pb if super class adds an argument that has same name as a child class. Question: Should we encourage this in Pylearn? JB: +0.5
--- a/doc/v2_planning/index.txt Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/v2_planning/index.txt Fri Sep 17 16:23:51 2010 -0400 @@ -1,8 +1,9 @@ -.. _libdoc: +.. _v2planning: .. toctree:: :maxdepth: 1 + API_coding_style API_formulas - API_coding_style + API_learner api_optimization
--- a/doc/v2_planning/plugin_RP.py Fri Sep 17 16:21:55 2010 -0400 +++ b/doc/v2_planning/plugin_RP.py Fri Sep 17 16:23:51 2010 -0400 @@ -82,7 +82,7 @@ # Main Plugins ( already provided in the library ); # This wrappers also registers the plugin -valid_data = create_data_plugin( sched, data = real_valid_data) +train_data = create_data_plugin( sched, data = real_train_data) train_model = create_train_model(sched, model = model) validate_model = create_valid_model(sched, model = model, data = valid_data) early_stopper = create_early_stopper(sched) @@ -105,9 +105,12 @@ cPickle.dump(model.parameters(), open('best_params.pkl','wb')) -# Create the dependency graph describing what does what +# Create the dependency graph describing what does what +train_data.act( on = sched.begin(), when = once() ) +train_data.act( on = Event('batch'), +train_data.act( on = train_model.done(), when = always()) train_model.act(on = train_data.batch(), when = always()) -validate_model.act(on = train_model.done(), when = every(n=10000)) +validate_model.act(on = train_model.done(), when = every(n=10000)) early_stopper.act(on = validate_model.error(), when = always()) print_error.act( on = train_model.error(), when = always() ) print_error.act( on = train_data.eod(), when = always() )