Mercurial > pylearn
changeset 1526:5804e44d7a1b
pep8
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Fri, 09 Nov 2012 16:58:17 -0500 |
parents | 9c24a2bdbe90 |
children | 211b217f9691 |
files | pylearn/sampling/tests/test_hmc.py |
diffstat | 1 files changed, 18 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/sampling/tests/test_hmc.py Fri Nov 09 14:48:26 2012 -0500 +++ b/pylearn/sampling/tests/test_hmc.py Fri Nov 09 16:58:17 2012 -0500 @@ -4,34 +4,34 @@ from pylearn.sampling.hmc import HMC_sampler + def _sampler_on_2d_gaussian(sampler_cls, burnin, n_samples): - batchsize=3 + batchsize = 3 rng = numpy.random.RandomState(234) # # Define a covariance and mu for a gaussian # - tmp = rng.randn(2,2).astype(theano.config.floatX) - tmp[0] += tmp[1] #induce some covariance + tmp = rng.randn(2, 2).astype(theano.config.floatX) + tmp[0] += tmp[1] # induce some covariance cov = numpy.dot(tmp, tmp.T) cov_inv = numpy.linalg.inv(cov).astype(theano.config.floatX) mu = numpy.asarray([5, 9.5], dtype=theano.config.floatX) def gaussian_energy(xlist): x = xlist - return 0.5 * (tensor.dot((x-mu),cov_inv)*(x-mu)).sum(axis=1) + return 0.5 * (tensor.dot((x - mu), cov_inv) * (x - mu)).sum(axis=1) - - position = theano.shared(rng.randn(batchsize, 2).astype(theano.config.floatX)) + position = theano.shared(rng.randn(batchsize, + 2).astype(theano.config.floatX)) sampler = sampler_cls(position, gaussian_energy) print 'initial position', position.get_value(borrow=True) print 'initial stepsize', sampler.stepsize.get_value(borrow=True) # DRAW SAMPLES - - samples = [sampler.draw() for r in xrange(burnin)] #burn-in + samples = [sampler.draw() for r in xrange(burnin)] # burn-in samples = numpy.asarray([sampler.draw() for r in xrange(n_samples)]) assert sampler.avg_acceptance_rate.get_value() > 0 @@ -45,24 +45,25 @@ print 'empirical mean: ', samples.mean(axis=0) #assert numpy.all(abs(mu - samples.mean(axis=0)) < 1) - print 'final stepsize', sampler.stepsize.get_value() print 'final acceptance_rate', sampler.avg_acceptance_rate.get_value() print 'target cov', cov - s = samples[:,0,:] - empirical_cov = numpy.cov(samples[:,0,:].T) + s = samples[:, 0, :] + empirical_cov = numpy.cov(samples[:, 0, :].T) print '' - print 'cov/empirical_cov', cov/empirical_cov - empirical_cov = numpy.cov(samples[:,1,:].T) - print 'cov/empirical_cov', cov/empirical_cov - empirical_cov = numpy.cov(samples[:,2,:].T) - print 'cov/empirical_cov', cov/empirical_cov + print 'cov/empirical_cov', cov / empirical_cov + empirical_cov = numpy.cov(samples[:, 1, :].T) + print 'cov/empirical_cov', cov / empirical_cov + empirical_cov = numpy.cov(samples[:, 2, :].T) + print 'cov/empirical_cov', cov / empirical_cov return sampler + def test_hmc(): print ('HMC') - sampler = _sampler_on_2d_gaussian(HMC_sampler.new_from_shared_positions, burnin=3000/20, n_samples=90000/20) + sampler = _sampler_on_2d_gaussian(HMC_sampler.new_from_shared_positions, + burnin=3000 / 20, n_samples=90000 / 20) assert abs(sampler.avg_acceptance_rate.get_value() - sampler.target_acceptance_rate) < .1 assert sampler.stepsize.get_value() >= sampler.stepsize_min assert sampler.stepsize.get_value() <= sampler.stepsize_max