Mercurial > pylearn
changeset 178:4090779e39a9
merged
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Tue, 13 May 2008 15:12:20 -0400 |
parents | 69759976b3ac |
children | 9911d2cc3c01 |
files | mlp.py stopper.py |
diffstat | 2 files changed, 142 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/mlp.py Tue May 13 15:11:47 2008 -0400 +++ b/mlp.py Tue May 13 15:12:20 2008 -0400 @@ -10,6 +10,21 @@ from nnet_ops import * import math +def sum_l2_cost(*params): + p = params[0] + rval = t.sum(p*p) + for p in params[1:]: + rval = rval + t.sum(p*p) + return rval + +def activation(w, b, v, c, x): + return t.dot(t.tanh(t.dot(x, w) + b), v) + c +def nll(w, b, v, c, x, y): + return crossentropy_softmax_1hot(prediction(w, b, v, c, x), y)[0] +def output(w, b, v, c, x, y): + return crossentropy_softmax_1hot(prediction(w, b, v, c, x), y)[1] + + class OneHiddenLayerNNetClassifier(OnlineGradientTLearner): """ @@ -67,7 +82,6 @@ - 'regularization_term' """ - def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,L2_regularizer=0,init_range=1.,n_inputs=None,minibatch_size=None): self._n_inputs = n_inputs self._n_outputs = n_classes @@ -142,6 +156,25 @@ self._n_epochs +=1 return self._n_epochs>=self._max_n_epochs + def updateMinibatch(self,minibatch): + # make sure all required fields are allocated and initialized + self.allocate(minibatch) + input_attributes = self.names2attributes(self.updateMinibatchInputAttributes()) + input_fields = minibatch(*self.updateMinibatchInputFields()) + print 'input attributes', input_attributes + print 'input fields', input_fields + results = self.update_minibatch_function(*(input_attributes+input_fields)) + print 'output attributes', self.updateMinibatchOutputAttributes() + print 'results', results + self.setAttributes(self.updateMinibatchOutputAttributes(), + results) + + if 0: + print 'n0', self.names2OpResults(self.updateMinibatchOutputAttributes()+ self.updateMinibatchInputFields()) + print 'n1', self.names2OpResults(self.updateMinibatchOutputAttributes()) + print 'n2', self.names2OpResults(self.updateEndInputAttributes()) + print 'n3', self.names2OpResults(self.updateEndOutputAttributes()) + class MLP(MinibatchUpdatesTLearner): """ Implement a feedforward multi-layer perceptron, with or without L1 and/or L2 regularization.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/stopper.py Tue May 13 15:12:20 2008 -0400 @@ -0,0 +1,108 @@ +"""Early stopping iterators + +The idea here is to supply early-stopping heuristics that can be used in the +form: + + stopper = SomeEarlyStopper() + + for i in stopper(): + # train from data + if i.set_score: + i.score = validation_score + + +So far I only have one heuristic, so maybe this won't scale. +""" + +class Stopper(object): + + def train(self, data, update_rows_fn, update, validate, save=None): + """Return the best model trained on data + + Parameters: + data - a thing that accepts getitem(<list of int64>), or a tuple of such things + update_rows_fn - fn : int --> <list or tensor of int> + update - fn: update an internal model from elements of data + validate - fn: evaluate an internal model based on elements of data + save - fn: return a copy of the internal model + + The body of this function exhausts the <self> iterator, and trains a + model using early stopping in the process. + """ + + best = None + for stp in self: + i = stp.iter + + # call update on some training set rows + t_rows = update_rows_fn(i) + if isinstance(data, (tuple, list)): + update(*[d[t_rows] for d in data]) + else: + update(data[t_rows]) + + if stp.set_score: + stp.score = validate() + if (stp.score < stp.best_score) and save: + best = save() + return best + + +class ICML08Stopper(Stopper): + @staticmethod + def icml08(ntrain, batchsize): + """Some setting similar to what I used for ICML08 submission""" + #TODO: what did I actually use? put that in here. + return ICML08Stopper(30*ntrain/batchsize, + ntrain/batchsize, 0.96, 2.0, 100000000) + + def __init__(self, i_wait, v_int, min_improvement, patience, hard_limit): + self.initial_wait = i_wait + self.set_score_interval = v_int + self.min_improvement = min_improvement + self.patience = patience + self.hard_limit = hard_limit + + self.best_score = float('inf') + self.best_iter = -1 + self.iter = -1 + + self.set_score = False + self.score = None + + def __iter__(self): + return self + + E_set_score = 'when iter.set_score is True, caller must assign a score to iter.score' + def next(self): + if self.set_score: #left over from last time + if self.score is None: + raise Exception(ICML08Stopper.E_set_score) + if self.score < (self.best_score * self.min_improvement): + (self.best_score, self.best_iter) = (self.score, self.iter) + self.score = None #un-set it + + + starting = self.iter < self.initial_wait + waiting = self.iter < (self.patience * self.best_iter) + if starting or waiting: + # continue to iterate + self.iter += 1 + if self.iter == self.hard_limit: + raise StopIteration + self.set_score = (self.iter % self.set_score_interval == 0) + return self + + raise StopIteration + + +class NStages(ICML08Stopper): + """Run for a fixed number of steps, checking validation set every so + often.""" + def __init__(self, hard_limit, v_int): + ICML08Stopper.__init__(self, hard_limit, v_int, 1.0, 1.0, hard_limit) + + #TODO: could optimize next() function. Most of what's in ICML08Stopper.next() + #is not necessary + +