changeset 288:2d08f46d17d8

removed old stuff
author Frederic Bastien <bastienf@iro.umontreal.ca>
date Fri, 06 Jun 2008 14:08:28 -0400
parents 78cc8fe3bbe9
children 3af204aa71e5 174374d59405
files mlp.py test_mlp.py
diffstat 2 files changed, 0 insertions(+), 372 deletions(-) [+]
line wrap: on
line diff
--- a/mlp.py	Fri Jun 06 14:01:36 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,240 +0,0 @@
-"""
-A straightforward classicial feedforward
-one-hidden-layer neural net, with L2 regularization.
-This is one of the simplest example of L{Learner}, and illustrates
-the use of theano.
-"""
-
-from learner import *
-from theano import tensor as t
-from nnet_ops import *
-import math
-from misc import *
-
-def function(inputs, outputs, linker='c&py'):
-    return theano.function(inputs, outputs, unpack_single=False,linker=linker)
-
-def randshape(*shape): return (numpy.random.rand(*shape) -0.5) * 0.001
-
-class ManualNNet(object):
-    def __init__(self, ninputs, nhid, nclass, lr, nepochs, 
-            linker='c&yp', 
-            hidden_layer=None):
-        class Vars:
-            def __init__(self, lr, l2coef=0.0):
-                lr = t.constant(lr)
-                l2coef = t.constant(l2coef)
-                input = t.matrix('input') # n_examples x n_inputs
-                target = t.ivector('target') # n_examples x 1
-                W2 = t.matrix('W2')
-                b2 = t.vector('b2')
-
-                if hidden_layer:
-                    hid, hid_params, hid_ivals, hid_regularization = hidden_layer(input)
-                else:
-                    W1 = t.matrix('W1')
-                    b1 = t.vector('b1')
-                    hid = t.tanh(b1 + t.dot(input, W1))
-                    hid_params = [W1, b1]
-                    hid_regularization = l2coef * t.sum(W1*W1)
-                    hid_ivals = [randshape(ninputs, nhid), randshape(nhid)]
-
-                params = [W2, b2] + hid_params
-                ivals = [randshape(nhid, nclass), randshape(nclass)]\
-                        + hid_ivals
-                nll, predictions = crossentropy_softmax_1hot( b2 + t.dot(hid, W2), target)
-                regularization = l2coef * t.sum(W2*W2) + hid_regularization
-                output_class = t.argmax(predictions,1)
-                loss_01 = t.neq(output_class, target)
-                g_params = t.grad(nll + regularization, params)
-                new_params = [t.sub_inplace(p, lr * gp) for p,gp in zip(params, g_params)]
-                self.__dict__.update(locals()); del self.self
-        self.nhid = nhid
-        self.nclass = nclass
-        self.nepochs = nepochs
-        self.v = Vars(lr)
-        self.params = None
-
-    def update(self, trainset):
-        params = self.v.ivals
-        update_fn = function(
-                [self.v.input, self.v.target] + self.v.params,
-                [self.v.nll] + self.v.new_params)
-        for i in xrange(self.nepochs):
-            for input, target in trainset.minibatches(['input', 'target'],
-                    minibatch_size=min(32, len(trainset))):
-                dummy = update_fn(input, target[:,0], *params)
-                if 0: print dummy[0] #the nll
-        return self.use
-    __call__ = update
-
-    def use(self, dset,
-            output_fieldnames=['output_class'],
-            test_stats_collector=None,
-            copy_inputs=False,
-            put_stats_in_output_dataset=True,
-            output_attributes=[]):
-        inputs = [self.v.input, self.v.target] + self.v.params
-        fn = function(inputs, [getattr(self.v, name) for name in output_fieldnames])
-        target = dset.fields()['target'] if ('target' in dset.fields()) else numpy.zeros((1,1),dtype='int64')
-        return ApplyFunctionDataSet(dset, 
-            lambda input, target: fn(input, target[:,0], *self.v.ivals),
-            output_fieldnames)
-
-
-class OneHiddenLayerNNetClassifier(OnlineGradientTLearner):
-    """
-    Implement a straightforward classicial feedforward
-    one-hidden-layer neural net, with L2 regularization.
-
-    The predictor parameters are obtained by minibatch/online gradient descent.
-    Training can proceed sequentially (with multiple calls to update with
-    different disjoint subsets of the training sets).
-
-    Hyper-parameters:
-      - L2_regularizer
-      - learning_rate
-      - n_hidden
-
-    For each (input_t,output_t) pair in a minibatch,::
-
-       output_activations_t = b2+W2*tanh(b1+W1*input_t)
-       output_t = softmax(output_activations_t)
-       output_class_t = argmax(output_activations_t)
-       class_error_t = 1_{output_class_t != target_t}
-       nll_t = -log(output_t[target_t])
-
-    and the training criterion is::
-
-       loss = L2_regularizer*(||W1||^2 + ||W2||^2) + sum_t nll_t
-
-    The parameters are [b1,W1,b2,W2] and are obtained by minimizing the loss by
-    stochastic minibatch gradient descent::
-
-       parameters[i] -= learning_rate * dloss/dparameters[i]
-       
-    The fields and attributes expected and produced by use and update are the following:
-
-     - Input and output fields (example-wise quantities):
-
-       - 'input' (always expected by use and update)
-       - 'target' (optionally expected by use and always by update)
-       - 'output' (optionally produced by use)
-       - 'output_class' (optionally produced by use)
-       - 'class_error' (optionally produced by use)
-       - 'nll' (optionally produced by use)
-       
-     - optional attributes (optionally expected as input_dataset attributes)
-       (warning, this may be dangerous, the 'use' method will use those provided in the 
-       input_dataset rather than those learned during 'update'; currently no support
-       for providing these to update):
-       
-       - 'L2_regularizer'
-       - 'b1' 
-       - 'W1'
-       - 'b2' 
-       - 'W2'
-       - 'parameters' = [b1, W1, b2, W2]
-       - 'regularization_term'
-
-    """
-    def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,L2_regularizer=0,init_range=1.,n_inputs=None,minibatch_size=None,linker='c|py'):
-        self._n_inputs = n_inputs
-        self._n_outputs = n_classes
-        self._n_hidden = n_hidden
-        self._init_range = init_range
-        self._max_n_epochs = max_n_epochs
-        self._minibatch_size = minibatch_size
-        self.learning_rate = learning_rate # this is the float
-        self.L2_regularizer = L2_regularizer
-        self._learning_rate = t.scalar('learning_rate') # this is the symbol
-        self._input = t.matrix('input') # n_examples x n_inputs
-        self._target = t.lmatrix('target') # n_examples x 1
-        self._target_vector = self._target[:,0]
-        self._L2_regularizer = t.scalar('L2_regularizer')
-        self._W1 = t.matrix('W1')
-        self._W2 = t.matrix('W2')
-        self._b1 = t.row('b1')
-        self._b2 = t.row('b2')
-        self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2))
-        self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T)
-        self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector)
-        self._output_class = t.argmax(self._output,1)
-        self._class_error = t.neq(self._output_class,self._target_vector)
-        self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0]
-        OnlineGradientTLearner.__init__(self, linker = linker)
-            
-    def attributeNames(self):
-        return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"]
-
-    def parameterAttributes(self):
-        return ["b1","W1", "b2", "W2"]
-    
-    def updateMinibatchInputFields(self):
-        return ["input","target"]
-    
-    def updateMinibatchInputAttributes(self):
-        return OnlineGradientTLearner.updateMinibatchInputAttributes(self)+["L2_regularizer"]
-    
-    def updateEndOutputAttributes(self):
-        return ["regularization_term"]
-
-    def lossAttribute(self):
-        return "minibatch_criterion"
-    
-    def defaultOutputFields(self, input_fields):
-        output_fields = ["output", "output_class",]
-        if "target" in input_fields:
-            output_fields += ["class_error", "nll"]
-        return output_fields
-        
-    def updateMinibatch(self,minibatch):
-        MinibatchUpdatesTLearner.updateMinibatch(self,minibatch)
-        #print self.nll
-
-    def allocate(self,minibatch):
-        minibatch_n_inputs  = minibatch["input"].shape[1]
-        if not self._n_inputs:
-            self._n_inputs = minibatch_n_inputs
-            self.b1 = numpy.zeros((1,self._n_hidden))
-            self.b2 = numpy.zeros((1,self._n_outputs))
-            self.forget()
-        elif self._n_inputs!=minibatch_n_inputs:
-            # if the input changes dimension on the fly, we resize and forget everything
-            self.forget()
-            
-    def forget(self):
-        if self._n_inputs:
-            r = self._init_range/math.sqrt(self._n_inputs)
-            self.W1 = numpy.random.uniform(low=-r,high=r,
-                                           size=(self._n_hidden,self._n_inputs))
-            r = self._init_range/math.sqrt(self._n_hidden)
-            self.W2 = numpy.random.uniform(low=-r,high=r,
-                                           size=(self._n_outputs,self._n_hidden))
-            self.b1[:]=0
-            self.b2[:]=0
-            self._n_epochs=0
-
-    def isLastEpoch(self):
-        self._n_epochs +=1
-        return self._n_epochs>=self._max_n_epochs
-
-    def debug_updateMinibatch(self,minibatch):
-        # make sure all required fields are allocated and initialized
-        self.allocate(minibatch)
-        input_attributes = self.names2attributes(self.updateMinibatchInputAttributes())
-        input_fields = minibatch(*self.updateMinibatchInputFields())
-        print 'input attributes', input_attributes
-        print 'input fields', input_fields
-        results = self.update_minibatch_function(*(input_attributes+input_fields))
-        print 'output attributes', self.updateMinibatchOutputAttributes()
-        print 'results', results
-        self.setAttributes(self.updateMinibatchOutputAttributes(),
-                           results)
-
-        if 0:
-            print 'n0', self.names2OpResults(self.updateMinibatchOutputAttributes()+ self.updateMinibatchInputFields())
-            print 'n1', self.names2OpResults(self.updateMinibatchOutputAttributes())
-            print 'n2', self.names2OpResults(self.updateEndInputAttributes())
-            print 'n3', self.names2OpResults(self.updateEndOutputAttributes())
-
--- a/test_mlp.py	Fri Jun 06 14:01:36 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,132 +0,0 @@
-
-from mlp import *
-import dataset
-import nnet_ops
-
-
-from functools import partial
-def separator(debugger, i, node, *ths):
-    print "==================="
-
-def what(debugger, i, node, *ths):
-    print "#%i" % i, node
-
-def parents(debugger, i, node, *ths):
-    print [input.step for input in node.inputs]
-
-def input_shapes(debugger, i, node, *ths):
-    print "input shapes: ",
-    for r in node.inputs:
-        if hasattr(r.value, 'shape'):
-            print r.value.shape,
-        else:
-            print "no_shape",
-    print
-
-def input_types(debugger, i, node, *ths):
-    print "input types: ",
-    for r in node.inputs:
-        print r.type,
-    print
-
-def output_shapes(debugger, i, node, *ths):
-    print "output shapes:",
-    for r in node.outputs:
-        if hasattr(r.value, 'shape'):
-            print r.value.shape,
-        else:
-            print "no_shape",
-    print
-
-def output_types(debugger, i, node, *ths):
-    print "output types:",
-    for r in node.outputs:
-        print r.type,
-    print
-
-
-def test0():
-    linker = 'c|py'
-    #linker = partial(theano.gof.DebugLinker, linkers = [theano.gof.OpWiseCLinker],
-    #                 debug_pre = [separator, what, parents, input_types, input_shapes],
-    #                 debug_post = [output_shapes, output_types],
-    #                 compare_fn = lambda x, y: numpy.all(x == y))
-    
-    nnet = OneHiddenLayerNNetClassifier(10,2,.001,1000, linker = linker)
-    training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
-                                                     [0, 1, 1],
-                                                     [1, 0, 1],
-                                                     [1, 1, 1]]),
-                                        {'input':slice(2),'target':2})
-    fprop=nnet(training_set)
-
-    output_ds = fprop(training_set)
-
-    for fieldname in output_ds.fieldNames():
-        print fieldname+"=",output_ds[fieldname]
-
-def test1():
-    nnet = ManualNNet(2, 10,3,.1,1000)
-    training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
-                                                     [0, 1, 1],
-                                                     [1, 0, 1],
-                                                     [1, 1, 1]]),
-                                        {'input':slice(2),'target':2})
-    fprop=nnet(training_set)
-
-    output_ds = fprop(training_set)
-
-    for fieldname in output_ds.fieldNames():
-        print fieldname+"=",output_ds[fieldname]
-
-def test2():
-    training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
-                                                     [0, 1, 1],
-                                                     [1, 0, 1],
-                                                     [1, 1, 1]]),
-                                        {'input':slice(2),'target':2})
-    nin, nhid=2, 10
-    def sigm_layer(input):
-        W1 = t.matrix('W1')
-        b1 = t.vector('b1')
-        return (nnet_ops.sigmoid(b1 + t.dot(input, W1)),
-                [W1, b1],
-                [(numpy.random.rand(nin, nhid) -0.5) * 0.001, numpy.zeros(nhid)])
-    nnet = ManualNNet(nin, nhid, 3, .1, 1000, hidden_layer=sigm_layer)
-    fprop=nnet(training_set)
-
-    output_ds = fprop(training_set)
-
-    for fieldname in output_ds.fieldNames():
-        print fieldname+"=",output_ds[fieldname]
-
-def test_interface_0():
-    learner = ManualNNet(2, 10, 3, .1, 1000)
-
-    model = learner(training_set)
-
-    model2 = learner(training_set)    # trains model a second time
-
-    learner.update(additional_data)   # modifies nnet and model by side-effect
-
-
-def test_interface2_1():
-    learn_algo = ManualNNet(2, 10, 3, .1, 1000)
-
-    prior = learn_algo()
-
-    model1 = learn_algo(training_set1)
-
-    model2 = learn_algo(training_set2)
-
-    model2.update(additional_data)
-
-    n_match = 0
-    for o1, o2 in zip(model1.use(test_data), model2.use(test_data)):
-        n_match += (o1 == o2) 
-
-    print n_match
-
-test1()
-test2()
-