Mercurial > pylearn
changeset 1297:24890ca1d96b
small changes to formulas to bring them closer to style recommendation
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Fri, 01 Oct 2010 12:19:55 -0400 |
parents | b9bc9d5a08cc |
children | e78ced0d6540 |
files | pylearn/formulas/costs.py pylearn/formulas/noise.py |
diffstat | 2 files changed, 24 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/formulas/costs.py Fri Oct 01 11:55:04 2010 -0400 +++ b/pylearn/formulas/costs.py Fri Oct 01 12:19:55 2010 -0400 @@ -1,5 +1,5 @@ """ -This script defines a few often used cost functions. +Common training criteria. """ import theano import theano.tensor as T @@ -20,3 +20,5 @@ return -(target * T.log(output) + (1.0 - target) * T.log(1.0 - output)) +# This file seems like it has some overlap with theano.tensor.nnet. Which functions should go +# in which file?
--- a/pylearn/formulas/noise.py Fri Oct 01 11:55:04 2010 -0400 +++ b/pylearn/formulas/noise.py Fri Oct 01 12:19:55 2010 -0400 @@ -1,12 +1,14 @@ """ +Noise functions used to train Denoising Auto-Associators. -This script define the different symbolic noise functions. +Functions in this module often include a `noise_lvl` argument that controls the amount of noise +that the function applies. The noise contract is simple: noise_lvl is a symbolic variable going from 0 to 1. 0: no change. 1: maximum noise. """ import theano -from tags import tags +import tags s=""" * A latex mathematical description of the formulas(for picture representation in generated documentation) * Tags(for searching): @@ -19,20 +21,28 @@ * Tell the domaine, range of the input/output(range should use the english notation of including or excluding) """ -@tags('noise','binomial','salt') -def binomial_noise(theano_rng,inp,noise_lvl): +@tags.tags('noise','binomial','salt') +def binomial_noise(theano_rng,input,noise_lvl): """ - This add binomial noise to inp. Only the salt part of pepper and salt. + Return `inp` with randomly-chosen elements set to zero. + + TODO: MATH DEFINITION - :type inp: Theano variable - :param inp: The input that we want to add noise + :type input: Theano tensor variable + :param input: input :type noise_lvl: float - :param noise_lvl: The %% of noise. Between 0 (no noise) and 1. + :param noise_lvl: The probability of setting each element to zero. """ - return theano_rng.binomial( size = inp.shape, n = 1, p = 1 - noise_lvl, dtype=theano.config.floatX) * inp + mask = theano_rng.binomial( + size = inp.shape, + n = 1, + p = 1 - noise_lvl, + dtype=theano.config.floatX) + # QUESTION: should the dtype not default to the input dtype? + return mask * input -@tags('noise','binomial NLP','pepper','salt') +@tags.tags('noise','binomial NLP','pepper','salt') def pepper_and_salt_noise(theano_rng,inp,noise_lvl): """ This add pepper and salt noise to inp @@ -44,7 +54,7 @@ return theano_rng.binomial( size = inp.shape, n = 1, p = 1 - noise_lvl[0], dtype=theano.config.floatX) * inp \ + (inp==0) * theano_rng.binomial( size = inp.shape, n = 1, p = noise_lvl[1], dtype=theano.config.floatX) -@tags('noise','gauss','gaussian') +@tags.tags('noise','gauss','gaussian') def gaussian_noise(theano_rng,inp,noise_lvl): """ This add gaussian NLP noise to inp