Mercurial > pylearn
diff test_dataset.py @ 71:5b699b31770a
merge
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Fri, 02 May 2008 18:19:35 -0400 |
parents | dde1fb1b63ba |
children | b4159cbdc06b 4b0859606d05 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test_dataset.py Fri May 02 18:19:35 2008 -0400 @@ -0,0 +1,114 @@ +#!/bin/env python +from dataset import * +from math import * +import numpy + +def test1(): + global a,ds + a = numpy.random.rand(10,4) + print a + ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]}) + print "len(ds)=",len(ds) + assert(len(ds)==10) + print "example 0 = ",ds[0] +# assert + print "x=",ds["x"] + print "x|y" + for x,y in ds("x","y"): + print x,y + minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4) + minibatch = minibatch_iterator.__iter__().next() + print "minibatch=",minibatch + for var in minibatch: + print "var=",var + print "take a slice and look at field y",ds[1:6:2]["y"] + +def test_ArrayDataSet(): + #don't test stream + #tested only with float value + a = numpy.random.rand(10,4) + print a + ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]}) + assert len(ds)==10 + #assert ds==a? should this work? + for i in range(len(ds)): + assert ds[i]['x'].all()==a[i][:2].all() + assert ds[i]['y']==a[i][3] + assert ds[i]['z'].all()==a[i][0:3:2].all() + print "x=",ds["x"] + print "x|y" + i=0 + for x in ds('x','y'): + assert numpy.append(x['x'],x['y']).all()==a[i].all() + i+=1 +# i=0 +# for x in ds['x','y']: # don't work +# assert numpy.append(x['x'],x['y']).all()==a[i].all() +# i+=1 +# for (x,y) in (ds('x','y'),a): #don't work # haven't found a variant that work. +# assert numpy.append(x,y)==z + i=0 + for x,y in ds('x','y'): + assert numpy.append(x,y).all()==a[i].all() + i+=1 + for minibatch in ds.minibatches(['x','z'], minibatch_size=3): + assert minibatch[0][:,0:3:2].all()==minibatch[1].all() + for x,z in ds.minibatches(['x','z'], minibatch_size=3): + assert x[:,0:3:2].all()==z.all() + +# for minibatch in ds.minibatches(['z','y'], minibatch_size=3): +# print minibatch +# minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4) +# minibatch = minibatch_iterator.__iter__().next() +# print "minibatch=",minibatch +# for var in minibatch: +# print "var=",var +# print "take a slice and look at field y",ds[1:6:2]["y"] + have_thrown = False + try: + ds['h'] # h is not defined... + except : + have_thrown = True + assert have_thrown == True + assert len(ds.fields())==3 + for field in ds.fields(): + for field_value in field: # iterate over the values associated to that field for all the ds examples + pass + for field in ds('x','z').fields(): + pass + for field in ds.fields('x','y'): + pass + for field_examples in ds.fields(): + for example_value in field_examples: + pass + + assert ds == ds.fields().examples() + + + #test missing value + + assert len(ds[:3])==3 + i=0 + for x,z in ds[:3]('x','z'): + assert ds[i]['z'].all()==a[i][0:3:2].all() + i+=1 + #ds[i1:i2:s]# returns a ds with the examples i1,i1+s,...i2-s. + + #ds[i]# returns an Example. + + #ds[[i1,i2,...in]]# returns a ds with examples i1,i2,...in. + + #ds[fieldname]# an iterable over the values of the field fieldname across + #the ds (the iterable is obtained by default by calling valuesVStack + #over the values for individual examples). + + #ds.<property># returns the value of a property associated with + #the name <property>. The following properties should be supported: + # - 'description': a textual description or name for the ds + # - 'fieldtypes': a list of types (one per field) + #* ds1 | ds2 | ds3 == ds.hstack([ds1,ds2,ds3]) + #* ds1 & ds2 & ds3 == ds.vstack([ds1,ds2,ds3]) + + +test_ArrayDataSet() +