comparison test_dataset.py @ 71:5b699b31770a

merge
author James Bergstra <bergstrj@iro.umontreal.ca>
date Fri, 02 May 2008 18:19:35 -0400
parents dde1fb1b63ba
children b4159cbdc06b 4b0859606d05
comparison
equal deleted inserted replaced
70:76e5c0f37165 71:5b699b31770a
1 #!/bin/env python
2 from dataset import *
3 from math import *
4 import numpy
5
6 def test1():
7 global a,ds
8 a = numpy.random.rand(10,4)
9 print a
10 ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]})
11 print "len(ds)=",len(ds)
12 assert(len(ds)==10)
13 print "example 0 = ",ds[0]
14 # assert
15 print "x=",ds["x"]
16 print "x|y"
17 for x,y in ds("x","y"):
18 print x,y
19 minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4)
20 minibatch = minibatch_iterator.__iter__().next()
21 print "minibatch=",minibatch
22 for var in minibatch:
23 print "var=",var
24 print "take a slice and look at field y",ds[1:6:2]["y"]
25
26 def test_ArrayDataSet():
27 #don't test stream
28 #tested only with float value
29 a = numpy.random.rand(10,4)
30 print a
31 ds = ArrayDataSet(a,{'x':slice(3),'y':3,'z':[0,2]})
32 assert len(ds)==10
33 #assert ds==a? should this work?
34 for i in range(len(ds)):
35 assert ds[i]['x'].all()==a[i][:2].all()
36 assert ds[i]['y']==a[i][3]
37 assert ds[i]['z'].all()==a[i][0:3:2].all()
38 print "x=",ds["x"]
39 print "x|y"
40 i=0
41 for x in ds('x','y'):
42 assert numpy.append(x['x'],x['y']).all()==a[i].all()
43 i+=1
44 # i=0
45 # for x in ds['x','y']: # don't work
46 # assert numpy.append(x['x'],x['y']).all()==a[i].all()
47 # i+=1
48 # for (x,y) in (ds('x','y'),a): #don't work # haven't found a variant that work.
49 # assert numpy.append(x,y)==z
50 i=0
51 for x,y in ds('x','y'):
52 assert numpy.append(x,y).all()==a[i].all()
53 i+=1
54 for minibatch in ds.minibatches(['x','z'], minibatch_size=3):
55 assert minibatch[0][:,0:3:2].all()==minibatch[1].all()
56 for x,z in ds.minibatches(['x','z'], minibatch_size=3):
57 assert x[:,0:3:2].all()==z.all()
58
59 # for minibatch in ds.minibatches(['z','y'], minibatch_size=3):
60 # print minibatch
61 # minibatch_iterator = ds.minibatches(fieldnames=['z','y'],n_batches=1,minibatch_size=3,offset=4)
62 # minibatch = minibatch_iterator.__iter__().next()
63 # print "minibatch=",minibatch
64 # for var in minibatch:
65 # print "var=",var
66 # print "take a slice and look at field y",ds[1:6:2]["y"]
67 have_thrown = False
68 try:
69 ds['h'] # h is not defined...
70 except :
71 have_thrown = True
72 assert have_thrown == True
73 assert len(ds.fields())==3
74 for field in ds.fields():
75 for field_value in field: # iterate over the values associated to that field for all the ds examples
76 pass
77 for field in ds('x','z').fields():
78 pass
79 for field in ds.fields('x','y'):
80 pass
81 for field_examples in ds.fields():
82 for example_value in field_examples:
83 pass
84
85 assert ds == ds.fields().examples()
86
87
88 #test missing value
89
90 assert len(ds[:3])==3
91 i=0
92 for x,z in ds[:3]('x','z'):
93 assert ds[i]['z'].all()==a[i][0:3:2].all()
94 i+=1
95 #ds[i1:i2:s]# returns a ds with the examples i1,i1+s,...i2-s.
96
97 #ds[i]# returns an Example.
98
99 #ds[[i1,i2,...in]]# returns a ds with examples i1,i2,...in.
100
101 #ds[fieldname]# an iterable over the values of the field fieldname across
102 #the ds (the iterable is obtained by default by calling valuesVStack
103 #over the values for individual examples).
104
105 #ds.<property># returns the value of a property associated with
106 #the name <property>. The following properties should be supported:
107 # - 'description': a textual description or name for the ds
108 # - 'fieldtypes': a list of types (one per field)
109 #* ds1 | ds2 | ds3 == ds.hstack([ds1,ds2,ds3])
110 #* ds1 & ds2 & ds3 == ds.vstack([ds1,ds2,ds3])
111
112
113 test_ArrayDataSet()
114