Mercurial > pylearn
diff test_mlp.py @ 183:25d0a0c713da
did some debugging of test_mlp
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Tue, 13 May 2008 18:30:08 -0400 |
parents | 2698c0feeb54 |
children | 562f308873f0 |
line wrap: on
line diff
--- a/test_mlp.py Tue May 13 17:00:53 2008 -0400 +++ b/test_mlp.py Tue May 13 18:30:08 2008 -0400 @@ -2,8 +2,56 @@ from mlp import * import dataset + +from functools import partial +def separator(debugger, i, node, *ths): + print "===================" + +def what(debugger, i, node, *ths): + print "#%i" % i, node + +def parents(debugger, i, node, *ths): + print [input.step for input in node.inputs] + +def input_shapes(debugger, i, node, *ths): + print "input shapes: ", + for r in node.inputs: + if hasattr(r.value, 'shape'): + print r.value.shape, + else: + print "no_shape", + print + +def input_types(debugger, i, node, *ths): + print "input types: ", + for r in node.inputs: + print r.type, + print + +def output_shapes(debugger, i, node, *ths): + print "output shapes:", + for r in node.outputs: + if hasattr(r.value, 'shape'): + print r.value.shape, + else: + print "no_shape", + print + +def output_types(debugger, i, node, *ths): + print "output types:", + for r in node.outputs: + print r.type, + print + + def test0(): - nnet = OneHiddenLayerNNetClassifier(10,2,.001,1000) + linker = 'c|py' + #linker = partial(theano.gof.DebugLinker, linkers = [theano.gof.OpWiseCLinker], + # debug_pre = [separator, what, parents, input_types, input_shapes], + # debug_post = [output_shapes, output_types], + # compare_fn = lambda x, y: numpy.all(x == y)) + + nnet = OneHiddenLayerNNetClassifier(10,2,.001,1000, linker = linker) training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0], [0, 1, 1], [1, 0, 1],