Mercurial > pylearn
comparison test_mlp.py @ 183:25d0a0c713da
did some debugging of test_mlp
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Tue, 13 May 2008 18:30:08 -0400 |
parents | 2698c0feeb54 |
children | 562f308873f0 |
comparison
equal
deleted
inserted
replaced
182:4afb41e61fcf | 183:25d0a0c713da |
---|---|
1 | 1 |
2 from mlp import * | 2 from mlp import * |
3 import dataset | 3 import dataset |
4 | 4 |
5 | |
6 from functools import partial | |
7 def separator(debugger, i, node, *ths): | |
8 print "===================" | |
9 | |
10 def what(debugger, i, node, *ths): | |
11 print "#%i" % i, node | |
12 | |
13 def parents(debugger, i, node, *ths): | |
14 print [input.step for input in node.inputs] | |
15 | |
16 def input_shapes(debugger, i, node, *ths): | |
17 print "input shapes: ", | |
18 for r in node.inputs: | |
19 if hasattr(r.value, 'shape'): | |
20 print r.value.shape, | |
21 else: | |
22 print "no_shape", | |
23 print | |
24 | |
25 def input_types(debugger, i, node, *ths): | |
26 print "input types: ", | |
27 for r in node.inputs: | |
28 print r.type, | |
29 print | |
30 | |
31 def output_shapes(debugger, i, node, *ths): | |
32 print "output shapes:", | |
33 for r in node.outputs: | |
34 if hasattr(r.value, 'shape'): | |
35 print r.value.shape, | |
36 else: | |
37 print "no_shape", | |
38 print | |
39 | |
40 def output_types(debugger, i, node, *ths): | |
41 print "output types:", | |
42 for r in node.outputs: | |
43 print r.type, | |
44 print | |
45 | |
46 | |
5 def test0(): | 47 def test0(): |
6 nnet = OneHiddenLayerNNetClassifier(10,2,.001,1000) | 48 linker = 'c|py' |
49 #linker = partial(theano.gof.DebugLinker, linkers = [theano.gof.OpWiseCLinker], | |
50 # debug_pre = [separator, what, parents, input_types, input_shapes], | |
51 # debug_post = [output_shapes, output_types], | |
52 # compare_fn = lambda x, y: numpy.all(x == y)) | |
53 | |
54 nnet = OneHiddenLayerNNetClassifier(10,2,.001,1000, linker = linker) | |
7 training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0], | 55 training_set = dataset.ArrayDataSet(numpy.array([[0, 0, 0], |
8 [0, 1, 1], | 56 [0, 1, 1], |
9 [1, 0, 1], | 57 [1, 0, 1], |
10 [1, 1, 1]]), | 58 [1, 1, 1]]), |
11 {'input':slice(2),'target':2}) | 59 {'input':slice(2),'target':2}) |