Mercurial > pylearn
comparison mlp.py @ 175:e9a95e19e6f8
Added a Print Op
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Tue, 13 May 2008 15:11:24 -0400 |
parents | ae5651a3696b |
children | 9911d2cc3c01 |
comparison
equal
deleted
inserted
replaced
172:fb4837eed1a6 | 175:e9a95e19e6f8 |
---|---|
7 | 7 |
8 from learner import * | 8 from learner import * |
9 from theano import tensor as t | 9 from theano import tensor as t |
10 from nnet_ops import * | 10 from nnet_ops import * |
11 import math | 11 import math |
12 | 12 from misc import * |
13 | 13 |
14 class OneHiddenLayerNNetClassifier(OnlineGradientTLearner): | 14 class OneHiddenLayerNNetClassifier(OnlineGradientTLearner): |
15 """ | 15 """ |
16 Implement a straightforward classicial feedforward | 16 Implement a straightforward classicial feedforward |
17 one-hidden-layer neural net, with L2 regularization. | 17 one-hidden-layer neural net, with L2 regularization. |
86 self._W2 = t.matrix('W2') | 86 self._W2 = t.matrix('W2') |
87 self._b1 = t.row('b1') | 87 self._b1 = t.row('b1') |
88 self._b2 = t.row('b2') | 88 self._b2 = t.row('b2') |
89 self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) | 89 self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) |
90 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) | 90 self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) |
91 self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) | 91 self._nll,self._output = crossentropy_softmax_1hot(Print("output_activations")(self._output_activations),self._target_vector) |
92 self._output_class = t.argmax(self._output,1) | 92 self._output_class = t.argmax(self._output,1) |
93 self._class_error = t.neq(self._output_class,self._target_vector) | 93 self._class_error = t.neq(self._output_class,self._target_vector) |
94 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] | 94 self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] |
95 OnlineGradientTLearner.__init__(self) | 95 OnlineGradientTLearner.__init__(self) |
96 | 96 |