Mercurial > pylearn
diff mlp.py @ 175:e9a95e19e6f8
Added a Print Op
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Tue, 13 May 2008 15:11:24 -0400 |
parents | ae5651a3696b |
children | 9911d2cc3c01 |
line wrap: on
line diff
--- a/mlp.py Tue May 13 14:28:47 2008 -0400 +++ b/mlp.py Tue May 13 15:11:24 2008 -0400 @@ -9,7 +9,7 @@ from theano import tensor as t from nnet_ops import * import math - +from misc import * class OneHiddenLayerNNetClassifier(OnlineGradientTLearner): """ @@ -88,7 +88,7 @@ self._b2 = t.row('b2') self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) - self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) + self._nll,self._output = crossentropy_softmax_1hot(Print("output_activations")(self._output_activations),self._target_vector) self._output_class = t.argmax(self._output,1) self._class_error = t.neq(self._output_class,self._target_vector) self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0]