Mercurial > pylearn
comparison simple_autoassociator.py/model.py @ 386:a474341861fa
Added a simple AA
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 02:27:00 -0400 |
parents | sparse_random_autoassociator/model.py@42cc94cf6c12 |
children | 98ca97cc9910 |
comparison
equal
deleted
inserted
replaced
385:db28ff3fb887 | 386:a474341861fa |
---|---|
1 """ | |
2 The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason | |
3 Weston's sampling trick (2008). | |
4 """ | |
5 | |
6 from graph import trainfn | |
7 import parameters | |
8 | |
9 import globals | |
10 from globals import LR | |
11 | |
12 import numpy | |
13 import random | |
14 random.seed(globals.SEED) | |
15 | |
16 class Model: | |
17 def __init__(self): | |
18 self.parameters = parameters.Parameters(randomly_initialize=True) | |
19 | |
20 def update(self, instance): | |
21 """ | |
22 Update the L{Model} using one training instance. | |
23 @param instance: A dict from feature index to (non-zero) value. | |
24 @todo: Should assert that nonzero_indices and zero_indices | |
25 are correct (i.e. are truly nonzero/zero). | |
26 """ | |
27 x = numpy.zeros(globals.INPUT_DIMENSION) | |
28 for idx in instance.keys(): | |
29 x[idx] = instance[idx] | |
30 | |
31 (y, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) | |
32 print | |
33 print "instance:", instance | |
34 print "OLD y:", y | |
35 print "OLD total loss:", loss | |
36 | |
37 # SGD update | |
38 self.parameters.w1 -= LR * gw1 | |
39 self.parameters.b1 -= LR * gb1 | |
40 self.parameters.w2 -= LR * gw2 | |
41 self.parameters.b2 -= LR * gb2 | |
42 | |
43 # Recompute the loss, to make sure it's descreasing | |
44 (y, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) | |
45 print "NEW y:", y | |
46 print "NEW total loss:", loss |