Mercurial > pylearn
view sparse_random_autoassociator/model.py @ 373:42cc94cf6c12
No update if there aren't any non-zeros
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Mon, 07 Jul 2008 02:15:14 -0400 |
parents | 75bab24bb2d8 |
children |
line wrap: on
line source
""" The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason Weston's sampling trick (2008). """ from graph import trainfn import parameters import globals from globals import LR import numpy import random random.seed(globals.SEED) def _select_indices(instance): """ Choose nonzero and zero indices (feature columns) of the instance. We select B{all} nonzero indices. We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly, without replacement. @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop. @return: (nonzero_indices, zero_indices) """ # Get the nonzero indices nonzero_indices = instance.keys() nonzero_indices.sort() # Get the zero indices # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop. zero_indices = [] while len(zero_indices) < globals.ZERO_SAMPLE_SIZE: idx = random.randint(0, globals.INPUT_DIMENSION - 1) if idx in nonzero_indices or idx in zero_indices: continue zero_indices.append(idx) zero_indices.sort() return (nonzero_indices, zero_indices) class Model: def __init__(self): self.parameters = parameters.Parameters(randomly_initialize=True) def update(self, instance): """ Update the L{Model} using one training instance. @param instance: A dict from feature index to (non-zero) value. @todo: Should assert that nonzero_indices and zero_indices are correct (i.e. are truly nonzero/zero). """ (nonzero_indices, zero_indices) = _select_indices(instance) # No update if there aren't any non-zeros. if len(nonzero_indices) == 0: return xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices]) print print "xnonzero:", xnonzero (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) print "OLD ynonzero:", ynonzero print "OLD yzero:", yzero print "OLD total loss:", loss # SGD update self.parameters.w1[nonzero_indices, :] -= LR * gw1nonzero self.parameters.b1 -= LR * gb1 self.parameters.w2[:, nonzero_indices] -= LR * gw2nonzero self.parameters.w2[:, zero_indices] -= LR * gw2zero self.parameters.b2[nonzero_indices] -= LR * gb2nonzero self.parameters.b2[zero_indices] -= LR * gb2zero # Recompute the loss, to make sure it's descreasing (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) print "NEW ynonzero:", ynonzero print "NEW yzero:", yzero print "NEW total loss:", loss