comparison mlp.py @ 111:88257dfedf8c

Added another work in progress, for mlp's
author bengioy@bengiomac.local
date Wed, 07 May 2008 09:16:04 -0400
parents
children d0a1bd0378c6
comparison
equal deleted inserted replaced
110:8fa1ef2411a0 111:88257dfedf8c
1
2 from learner import *
3 from theano import tensor as t
4 from theano.scalar import as_scalar
5
6 # this is one of the simplest example of learner, and illustrates
7 # the use of theano
8
9
10 class OneHiddenLayerNNetClassifier(MinibatchUpdatesTLearner):
11 """
12 Implement a straightforward classicial feedforward
13 one-hidden-layer neural net, with L2 regularization.
14
15 The predictor parameters are obtained by minibatch/online gradient descent.
16 Training can proceed sequentially (with multiple calls to update with
17 different disjoint subsets of the training sets).
18
19 Hyper-parameters:
20 - L2_regularizer
21 - learning_rate
22 - n_hidden
23
24 For each (input_t,output_t) pair in a minibatch,::
25
26 output_activations_t = b2+W2*tanh(b1+W1*input_t)
27 output_t = softmax(output_activations_t)
28 output_class_t = argmax(output_activations_t)
29 class_error_t = 1_{output_class_t != target_t}
30 nll_t = -log(output_t[target_t])
31
32 and the training criterion is::
33
34 loss = L2_regularizer*(||W1||^2 + ||W2||^2) + sum_t nll_t
35
36 The parameters are [b1,W1,b2,W2] and are obtained by minimizing the loss by
37 stochastic minibatch gradient descent::
38
39 parameters[i] -= learning_rate * dloss/dparameters[i]
40
41 The fields and attributes expected and produced by use and update are the following:
42
43 - Input and output fields (example-wise quantities):
44
45 - 'input' (always expected by use and update)
46 - 'target' (optionally expected by use and always by update)
47 - 'output' (optionally produced by use)
48 - 'output_class' (optionally produced by use)
49 - 'class_error' (optionally produced by use)
50 - 'nll' (optionally produced by use)
51
52 - optional attributes (optionally expected as input_dataset attributes)
53 (warning, this may be dangerous, the 'use' method will use those provided in the
54 input_dataset rather than those learned during 'update'; currently no support
55 for providing these to update):
56
57 - 'L2_regularizer'
58 - 'b1'
59 - 'W1'
60 - 'b2'
61 - 'W2'
62 - 'parameters' = [b1, W1, b2, W2]
63 - 'regularization_term'
64
65 """
66
67 def attributeNames(self):
68 return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"]
69
70 def parameterAttributes(self):
71 return ["b1","W1", "b2", "W2"]
72
73 def useInputAttributes(self):
74 return self.parameterAttributes()
75
76 def useOutputAttributes(self):
77 return []
78
79 def updateInputAttributes(self):
80 return self.parameterAttributes() + ["L2_regularizer"]
81
82 def updateMinibatchInputFields(self):
83 return ["input","target"]
84
85 def updateMinibatchInputAttributes(self):
86 return self.parameterAttributes()
87
88 def updateMinibatchOutputAttributes(self):
89 return self.parameterAttributes()
90
91 def updateEndInputAttributes(self):
92 return self.parameterAttributes()
93
94 def updateEndOutputAttributes(self):
95 return ["regularization_term"]
96
97 def defaultOutputFields(self, input_fields):
98 output_fields = ["output", "output_class",]
99 if "target" in input_fields:
100 output_fields += ["class_error", "nll"]
101 return output_fields
102
103 def __init__(self):
104 self._input = t.matrix('input') # n_examples x n_inputs
105 self._target = t.matrix('target') # n_examples x n_outputs
106 self._lambda = as_scalar(0.,'lambda')
107 self._theta = t.matrix('theta')
108 self._W = self._theta[:,1:]
109 self._b = self._theta[:,0]
110 self._XtX = t.matrix('XtX')
111 self._XtY = t.matrix('XtY')
112 self._extended_input = t.prepend_one_to_each_row(self._input)
113 self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix
114 self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector
115 self._regularizer = self._lambda * t.dot(self._W,self._W)
116 self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input))
117 self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target))
118 self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY)
119
120 OneShotTLearner.__init__(self)
121
122 def allocate(self,minibatch):
123 minibatch_n_inputs = minibatch["input"].shape[1]
124 minibatch_n_outputs = minibatch["target"].shape[1]
125 if not self._n_inputs:
126 self._n_inputs = minibatch_n_inputs
127 self._n_outputs = minibatch_n_outputs
128 self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs))
129 self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs))
130 self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs))
131 self.forget()
132 elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs:
133 # if the input or target changes dimension on the fly, we resize and forget everything
134 self.forget()
135
136 def forget(self):
137 if self._n_inputs and self._n_outputs:
138 self.XtX.resize((1+self.n_inputs,1+self.n_inputs))
139 self.XtY.resize((1+self.n_inputs,self.n_outputs))
140 self.XtX.data[:,:]=0
141 self.XtY.data[:,:]=0
142 numpy.diag(self.XtX.data)[1:]=self.lambda
143
144
145 class MLP(MinibatchUpdatesTLearner):
146 """
147 Implement a feedforward multi-layer perceptron, with or without L1 and/or L2 regularization.
148
149 The predictor parameters are obtained by minibatch/online gradient descent.
150 Training can proceed sequentially (with multiple calls to update with
151 different disjoint subsets of the training sets).
152
153 Hyper-parameters:
154 - L1_regularizer
155 - L2_regularizer
156 - neuron_sparsity_regularizer
157 - initial_learning_rate
158 - learning_rate_decrease_rate
159 - n_hidden_per_layer (a list of integers)
160 - activation_function ("sigmoid","tanh", or "ratio")
161
162 The output/task type (classification, regression, etc.) is obtained by specializing MLP.
163
164 For each (input[t],output[t]) pair in a minibatch,::
165
166 activation[0] = input_t
167 for k=1 to n_hidden_layers:
168 activation[k]=activation_function(b[k]+ W[k]*activation[k-1])
169 output_t = output_activation_function(b[n_hidden_layers+1]+W[n_hidden_layers+1]*activation[n_hidden_layers])
170
171 and the b and W are obtained by minimizing the following by stochastic minibatch gradient descent::
172
173 L2_regularizer sum_{ijk} W_{kij}^2 + L1_regularizer sum_{kij} |W_{kij}|
174 + neuron_sparsity_regularizer sum_{ki} |b_{ki} + infinity|
175 - sum_t log P_{output_model}(target_t | output_t)
176
177 The fields and attributes expected and produced by use and update are the following:
178
179 - Input and output fields (example-wise quantities):
180
181 - 'input' (always expected by use and update)
182 - 'target' (optionally expected by use and always by update)
183 - 'output' (optionally produced by use)
184 - error fields produced by sub-class of MLP
185
186 - optional attributes (optionally expected as input_dataset attributes)
187 (warning, this may be dangerous, the 'use' method will use those provided in the
188 input_dataset rather than those learned during 'update'; currently no support
189 for providing these to update):
190
191 - 'L1_regularizer'
192 - 'L2_regularizer'
193 - 'b'
194 - 'W'
195 - 'parameters' = [b[1], W[1], b[2], W[2], ...]
196 - 'regularization_term'
197
198 """
199
200 def attributeNames(self):
201 return ["parameters","b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer","regularization_term"]
202
203 def useInputAttributes(self):
204 return ["b","W"]
205
206 def useOutputAttributes(self):
207 return []
208
209 def updateInputAttributes(self):
210 return ["b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer"]
211
212 def updateMinibatchInputFields(self):
213 return ["input","target"]
214
215 def updateMinibatchInputAttributes(self):
216 return ["b","W"]
217
218 def updateMinibatchOutputAttributes(self):
219 return ["new_XtX","new_XtY"]
220
221 def updateEndInputAttributes(self):
222 return ["theta","XtX","XtY"]
223
224 def updateEndOutputAttributes(self):
225 return ["new_theta","b","W","regularization_term"] # CHECK: WILL b AND W CONTAIN OLD OR NEW THETA? @todo i.e. order of computation = ?
226
227 def parameterAttributes(self):
228 return ["b","W"]
229
230 def defaultOutputFields(self, input_fields):
231 output_fields = ["output"]
232 if "target" in input_fields:
233 output_fields.append("squared_error")
234 return output_fields
235
236 def __init__(self):
237 self._input = t.matrix('input') # n_examples x n_inputs
238 self._target = t.matrix('target') # n_examples x n_outputs
239 self._lambda = as_scalar(0.,'lambda')
240 self._theta = t.matrix('theta')
241 self._W = self._theta[:,1:]
242 self._b = self._theta[:,0]
243 self._XtX = t.matrix('XtX')
244 self._XtY = t.matrix('XtY')
245 self._extended_input = t.prepend_one_to_each_row(self._input)
246 self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix
247 self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector
248 self._regularizer = self._lambda * t.dot(self._W,self._W)
249 self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input))
250 self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target))
251 self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY)
252
253 OneShotTLearner.__init__(self)
254
255 def allocate(self,minibatch):
256 minibatch_n_inputs = minibatch["input"].shape[1]
257 minibatch_n_outputs = minibatch["target"].shape[1]
258 if not self._n_inputs:
259 self._n_inputs = minibatch_n_inputs
260 self._n_outputs = minibatch_n_outputs
261 self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs))
262 self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs))
263 self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs))
264 self.forget()
265 elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs:
266 # if the input or target changes dimension on the fly, we resize and forget everything
267 self.forget()
268
269 def forget(self):
270 if self._n_inputs and self._n_outputs:
271 self.XtX.resize((1+self.n_inputs,1+self.n_inputs))
272 self.XtY.resize((1+self.n_inputs,self.n_outputs))
273 self.XtX.data[:,:]=0
274 self.XtY.data[:,:]=0
275 numpy.diag(self.XtX.data)[1:]=self.lambda
276