Mercurial > pylearn
comparison mlp.py @ 111:88257dfedf8c
Added another work in progress, for mlp's
author | bengioy@bengiomac.local |
---|---|
date | Wed, 07 May 2008 09:16:04 -0400 |
parents | |
children | d0a1bd0378c6 |
comparison
equal
deleted
inserted
replaced
110:8fa1ef2411a0 | 111:88257dfedf8c |
---|---|
1 | |
2 from learner import * | |
3 from theano import tensor as t | |
4 from theano.scalar import as_scalar | |
5 | |
6 # this is one of the simplest example of learner, and illustrates | |
7 # the use of theano | |
8 | |
9 | |
10 class OneHiddenLayerNNetClassifier(MinibatchUpdatesTLearner): | |
11 """ | |
12 Implement a straightforward classicial feedforward | |
13 one-hidden-layer neural net, with L2 regularization. | |
14 | |
15 The predictor parameters are obtained by minibatch/online gradient descent. | |
16 Training can proceed sequentially (with multiple calls to update with | |
17 different disjoint subsets of the training sets). | |
18 | |
19 Hyper-parameters: | |
20 - L2_regularizer | |
21 - learning_rate | |
22 - n_hidden | |
23 | |
24 For each (input_t,output_t) pair in a minibatch,:: | |
25 | |
26 output_activations_t = b2+W2*tanh(b1+W1*input_t) | |
27 output_t = softmax(output_activations_t) | |
28 output_class_t = argmax(output_activations_t) | |
29 class_error_t = 1_{output_class_t != target_t} | |
30 nll_t = -log(output_t[target_t]) | |
31 | |
32 and the training criterion is:: | |
33 | |
34 loss = L2_regularizer*(||W1||^2 + ||W2||^2) + sum_t nll_t | |
35 | |
36 The parameters are [b1,W1,b2,W2] and are obtained by minimizing the loss by | |
37 stochastic minibatch gradient descent:: | |
38 | |
39 parameters[i] -= learning_rate * dloss/dparameters[i] | |
40 | |
41 The fields and attributes expected and produced by use and update are the following: | |
42 | |
43 - Input and output fields (example-wise quantities): | |
44 | |
45 - 'input' (always expected by use and update) | |
46 - 'target' (optionally expected by use and always by update) | |
47 - 'output' (optionally produced by use) | |
48 - 'output_class' (optionally produced by use) | |
49 - 'class_error' (optionally produced by use) | |
50 - 'nll' (optionally produced by use) | |
51 | |
52 - optional attributes (optionally expected as input_dataset attributes) | |
53 (warning, this may be dangerous, the 'use' method will use those provided in the | |
54 input_dataset rather than those learned during 'update'; currently no support | |
55 for providing these to update): | |
56 | |
57 - 'L2_regularizer' | |
58 - 'b1' | |
59 - 'W1' | |
60 - 'b2' | |
61 - 'W2' | |
62 - 'parameters' = [b1, W1, b2, W2] | |
63 - 'regularization_term' | |
64 | |
65 """ | |
66 | |
67 def attributeNames(self): | |
68 return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"] | |
69 | |
70 def parameterAttributes(self): | |
71 return ["b1","W1", "b2", "W2"] | |
72 | |
73 def useInputAttributes(self): | |
74 return self.parameterAttributes() | |
75 | |
76 def useOutputAttributes(self): | |
77 return [] | |
78 | |
79 def updateInputAttributes(self): | |
80 return self.parameterAttributes() + ["L2_regularizer"] | |
81 | |
82 def updateMinibatchInputFields(self): | |
83 return ["input","target"] | |
84 | |
85 def updateMinibatchInputAttributes(self): | |
86 return self.parameterAttributes() | |
87 | |
88 def updateMinibatchOutputAttributes(self): | |
89 return self.parameterAttributes() | |
90 | |
91 def updateEndInputAttributes(self): | |
92 return self.parameterAttributes() | |
93 | |
94 def updateEndOutputAttributes(self): | |
95 return ["regularization_term"] | |
96 | |
97 def defaultOutputFields(self, input_fields): | |
98 output_fields = ["output", "output_class",] | |
99 if "target" in input_fields: | |
100 output_fields += ["class_error", "nll"] | |
101 return output_fields | |
102 | |
103 def __init__(self): | |
104 self._input = t.matrix('input') # n_examples x n_inputs | |
105 self._target = t.matrix('target') # n_examples x n_outputs | |
106 self._lambda = as_scalar(0.,'lambda') | |
107 self._theta = t.matrix('theta') | |
108 self._W = self._theta[:,1:] | |
109 self._b = self._theta[:,0] | |
110 self._XtX = t.matrix('XtX') | |
111 self._XtY = t.matrix('XtY') | |
112 self._extended_input = t.prepend_one_to_each_row(self._input) | |
113 self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix | |
114 self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector | |
115 self._regularizer = self._lambda * t.dot(self._W,self._W) | |
116 self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input)) | |
117 self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target)) | |
118 self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY) | |
119 | |
120 OneShotTLearner.__init__(self) | |
121 | |
122 def allocate(self,minibatch): | |
123 minibatch_n_inputs = minibatch["input"].shape[1] | |
124 minibatch_n_outputs = minibatch["target"].shape[1] | |
125 if not self._n_inputs: | |
126 self._n_inputs = minibatch_n_inputs | |
127 self._n_outputs = minibatch_n_outputs | |
128 self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs)) | |
129 self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs)) | |
130 self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs)) | |
131 self.forget() | |
132 elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs: | |
133 # if the input or target changes dimension on the fly, we resize and forget everything | |
134 self.forget() | |
135 | |
136 def forget(self): | |
137 if self._n_inputs and self._n_outputs: | |
138 self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) | |
139 self.XtY.resize((1+self.n_inputs,self.n_outputs)) | |
140 self.XtX.data[:,:]=0 | |
141 self.XtY.data[:,:]=0 | |
142 numpy.diag(self.XtX.data)[1:]=self.lambda | |
143 | |
144 | |
145 class MLP(MinibatchUpdatesTLearner): | |
146 """ | |
147 Implement a feedforward multi-layer perceptron, with or without L1 and/or L2 regularization. | |
148 | |
149 The predictor parameters are obtained by minibatch/online gradient descent. | |
150 Training can proceed sequentially (with multiple calls to update with | |
151 different disjoint subsets of the training sets). | |
152 | |
153 Hyper-parameters: | |
154 - L1_regularizer | |
155 - L2_regularizer | |
156 - neuron_sparsity_regularizer | |
157 - initial_learning_rate | |
158 - learning_rate_decrease_rate | |
159 - n_hidden_per_layer (a list of integers) | |
160 - activation_function ("sigmoid","tanh", or "ratio") | |
161 | |
162 The output/task type (classification, regression, etc.) is obtained by specializing MLP. | |
163 | |
164 For each (input[t],output[t]) pair in a minibatch,:: | |
165 | |
166 activation[0] = input_t | |
167 for k=1 to n_hidden_layers: | |
168 activation[k]=activation_function(b[k]+ W[k]*activation[k-1]) | |
169 output_t = output_activation_function(b[n_hidden_layers+1]+W[n_hidden_layers+1]*activation[n_hidden_layers]) | |
170 | |
171 and the b and W are obtained by minimizing the following by stochastic minibatch gradient descent:: | |
172 | |
173 L2_regularizer sum_{ijk} W_{kij}^2 + L1_regularizer sum_{kij} |W_{kij}| | |
174 + neuron_sparsity_regularizer sum_{ki} |b_{ki} + infinity| | |
175 - sum_t log P_{output_model}(target_t | output_t) | |
176 | |
177 The fields and attributes expected and produced by use and update are the following: | |
178 | |
179 - Input and output fields (example-wise quantities): | |
180 | |
181 - 'input' (always expected by use and update) | |
182 - 'target' (optionally expected by use and always by update) | |
183 - 'output' (optionally produced by use) | |
184 - error fields produced by sub-class of MLP | |
185 | |
186 - optional attributes (optionally expected as input_dataset attributes) | |
187 (warning, this may be dangerous, the 'use' method will use those provided in the | |
188 input_dataset rather than those learned during 'update'; currently no support | |
189 for providing these to update): | |
190 | |
191 - 'L1_regularizer' | |
192 - 'L2_regularizer' | |
193 - 'b' | |
194 - 'W' | |
195 - 'parameters' = [b[1], W[1], b[2], W[2], ...] | |
196 - 'regularization_term' | |
197 | |
198 """ | |
199 | |
200 def attributeNames(self): | |
201 return ["parameters","b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer","regularization_term"] | |
202 | |
203 def useInputAttributes(self): | |
204 return ["b","W"] | |
205 | |
206 def useOutputAttributes(self): | |
207 return [] | |
208 | |
209 def updateInputAttributes(self): | |
210 return ["b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer"] | |
211 | |
212 def updateMinibatchInputFields(self): | |
213 return ["input","target"] | |
214 | |
215 def updateMinibatchInputAttributes(self): | |
216 return ["b","W"] | |
217 | |
218 def updateMinibatchOutputAttributes(self): | |
219 return ["new_XtX","new_XtY"] | |
220 | |
221 def updateEndInputAttributes(self): | |
222 return ["theta","XtX","XtY"] | |
223 | |
224 def updateEndOutputAttributes(self): | |
225 return ["new_theta","b","W","regularization_term"] # CHECK: WILL b AND W CONTAIN OLD OR NEW THETA? @todo i.e. order of computation = ? | |
226 | |
227 def parameterAttributes(self): | |
228 return ["b","W"] | |
229 | |
230 def defaultOutputFields(self, input_fields): | |
231 output_fields = ["output"] | |
232 if "target" in input_fields: | |
233 output_fields.append("squared_error") | |
234 return output_fields | |
235 | |
236 def __init__(self): | |
237 self._input = t.matrix('input') # n_examples x n_inputs | |
238 self._target = t.matrix('target') # n_examples x n_outputs | |
239 self._lambda = as_scalar(0.,'lambda') | |
240 self._theta = t.matrix('theta') | |
241 self._W = self._theta[:,1:] | |
242 self._b = self._theta[:,0] | |
243 self._XtX = t.matrix('XtX') | |
244 self._XtY = t.matrix('XtY') | |
245 self._extended_input = t.prepend_one_to_each_row(self._input) | |
246 self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix | |
247 self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector | |
248 self._regularizer = self._lambda * t.dot(self._W,self._W) | |
249 self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input)) | |
250 self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target)) | |
251 self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY) | |
252 | |
253 OneShotTLearner.__init__(self) | |
254 | |
255 def allocate(self,minibatch): | |
256 minibatch_n_inputs = minibatch["input"].shape[1] | |
257 minibatch_n_outputs = minibatch["target"].shape[1] | |
258 if not self._n_inputs: | |
259 self._n_inputs = minibatch_n_inputs | |
260 self._n_outputs = minibatch_n_outputs | |
261 self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs)) | |
262 self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs)) | |
263 self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs)) | |
264 self.forget() | |
265 elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs: | |
266 # if the input or target changes dimension on the fly, we resize and forget everything | |
267 self.forget() | |
268 | |
269 def forget(self): | |
270 if self._n_inputs and self._n_outputs: | |
271 self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) | |
272 self.XtY.resize((1+self.n_inputs,self.n_outputs)) | |
273 self.XtX.data[:,:]=0 | |
274 self.XtY.data[:,:]=0 | |
275 numpy.diag(self.XtX.data)[1:]=self.lambda | |
276 |