Mercurial > pylearn
diff mlp.py @ 111:88257dfedf8c
Added another work in progress, for mlp's
author | bengioy@bengiomac.local |
---|---|
date | Wed, 07 May 2008 09:16:04 -0400 |
parents | |
children | d0a1bd0378c6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mlp.py Wed May 07 09:16:04 2008 -0400 @@ -0,0 +1,276 @@ + +from learner import * +from theano import tensor as t +from theano.scalar import as_scalar + +# this is one of the simplest example of learner, and illustrates +# the use of theano + + +class OneHiddenLayerNNetClassifier(MinibatchUpdatesTLearner): + """ + Implement a straightforward classicial feedforward + one-hidden-layer neural net, with L2 regularization. + + The predictor parameters are obtained by minibatch/online gradient descent. + Training can proceed sequentially (with multiple calls to update with + different disjoint subsets of the training sets). + + Hyper-parameters: + - L2_regularizer + - learning_rate + - n_hidden + + For each (input_t,output_t) pair in a minibatch,:: + + output_activations_t = b2+W2*tanh(b1+W1*input_t) + output_t = softmax(output_activations_t) + output_class_t = argmax(output_activations_t) + class_error_t = 1_{output_class_t != target_t} + nll_t = -log(output_t[target_t]) + + and the training criterion is:: + + loss = L2_regularizer*(||W1||^2 + ||W2||^2) + sum_t nll_t + + The parameters are [b1,W1,b2,W2] and are obtained by minimizing the loss by + stochastic minibatch gradient descent:: + + parameters[i] -= learning_rate * dloss/dparameters[i] + + The fields and attributes expected and produced by use and update are the following: + + - Input and output fields (example-wise quantities): + + - 'input' (always expected by use and update) + - 'target' (optionally expected by use and always by update) + - 'output' (optionally produced by use) + - 'output_class' (optionally produced by use) + - 'class_error' (optionally produced by use) + - 'nll' (optionally produced by use) + + - optional attributes (optionally expected as input_dataset attributes) + (warning, this may be dangerous, the 'use' method will use those provided in the + input_dataset rather than those learned during 'update'; currently no support + for providing these to update): + + - 'L2_regularizer' + - 'b1' + - 'W1' + - 'b2' + - 'W2' + - 'parameters' = [b1, W1, b2, W2] + - 'regularization_term' + + """ + + def attributeNames(self): + return ["parameters","b1","W2","b2","W2", "L2_regularizer","regularization_term"] + + def parameterAttributes(self): + return ["b1","W1", "b2", "W2"] + + def useInputAttributes(self): + return self.parameterAttributes() + + def useOutputAttributes(self): + return [] + + def updateInputAttributes(self): + return self.parameterAttributes() + ["L2_regularizer"] + + def updateMinibatchInputFields(self): + return ["input","target"] + + def updateMinibatchInputAttributes(self): + return self.parameterAttributes() + + def updateMinibatchOutputAttributes(self): + return self.parameterAttributes() + + def updateEndInputAttributes(self): + return self.parameterAttributes() + + def updateEndOutputAttributes(self): + return ["regularization_term"] + + def defaultOutputFields(self, input_fields): + output_fields = ["output", "output_class",] + if "target" in input_fields: + output_fields += ["class_error", "nll"] + return output_fields + + def __init__(self): + self._input = t.matrix('input') # n_examples x n_inputs + self._target = t.matrix('target') # n_examples x n_outputs + self._lambda = as_scalar(0.,'lambda') + self._theta = t.matrix('theta') + self._W = self._theta[:,1:] + self._b = self._theta[:,0] + self._XtX = t.matrix('XtX') + self._XtY = t.matrix('XtY') + self._extended_input = t.prepend_one_to_each_row(self._input) + self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix + self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector + self._regularizer = self._lambda * t.dot(self._W,self._W) + self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input)) + self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target)) + self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY) + + OneShotTLearner.__init__(self) + + def allocate(self,minibatch): + minibatch_n_inputs = minibatch["input"].shape[1] + minibatch_n_outputs = minibatch["target"].shape[1] + if not self._n_inputs: + self._n_inputs = minibatch_n_inputs + self._n_outputs = minibatch_n_outputs + self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs)) + self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs)) + self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs)) + self.forget() + elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs: + # if the input or target changes dimension on the fly, we resize and forget everything + self.forget() + + def forget(self): + if self._n_inputs and self._n_outputs: + self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) + self.XtY.resize((1+self.n_inputs,self.n_outputs)) + self.XtX.data[:,:]=0 + self.XtY.data[:,:]=0 + numpy.diag(self.XtX.data)[1:]=self.lambda + + +class MLP(MinibatchUpdatesTLearner): + """ + Implement a feedforward multi-layer perceptron, with or without L1 and/or L2 regularization. + + The predictor parameters are obtained by minibatch/online gradient descent. + Training can proceed sequentially (with multiple calls to update with + different disjoint subsets of the training sets). + + Hyper-parameters: + - L1_regularizer + - L2_regularizer + - neuron_sparsity_regularizer + - initial_learning_rate + - learning_rate_decrease_rate + - n_hidden_per_layer (a list of integers) + - activation_function ("sigmoid","tanh", or "ratio") + + The output/task type (classification, regression, etc.) is obtained by specializing MLP. + + For each (input[t],output[t]) pair in a minibatch,:: + + activation[0] = input_t + for k=1 to n_hidden_layers: + activation[k]=activation_function(b[k]+ W[k]*activation[k-1]) + output_t = output_activation_function(b[n_hidden_layers+1]+W[n_hidden_layers+1]*activation[n_hidden_layers]) + + and the b and W are obtained by minimizing the following by stochastic minibatch gradient descent:: + + L2_regularizer sum_{ijk} W_{kij}^2 + L1_regularizer sum_{kij} |W_{kij}| + + neuron_sparsity_regularizer sum_{ki} |b_{ki} + infinity| + - sum_t log P_{output_model}(target_t | output_t) + + The fields and attributes expected and produced by use and update are the following: + + - Input and output fields (example-wise quantities): + + - 'input' (always expected by use and update) + - 'target' (optionally expected by use and always by update) + - 'output' (optionally produced by use) + - error fields produced by sub-class of MLP + + - optional attributes (optionally expected as input_dataset attributes) + (warning, this may be dangerous, the 'use' method will use those provided in the + input_dataset rather than those learned during 'update'; currently no support + for providing these to update): + + - 'L1_regularizer' + - 'L2_regularizer' + - 'b' + - 'W' + - 'parameters' = [b[1], W[1], b[2], W[2], ...] + - 'regularization_term' + + """ + + def attributeNames(self): + return ["parameters","b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer","regularization_term"] + + def useInputAttributes(self): + return ["b","W"] + + def useOutputAttributes(self): + return [] + + def updateInputAttributes(self): + return ["b","W","L1_regularizer","L2_regularizer","neuron_sparsity_regularizer"] + + def updateMinibatchInputFields(self): + return ["input","target"] + + def updateMinibatchInputAttributes(self): + return ["b","W"] + + def updateMinibatchOutputAttributes(self): + return ["new_XtX","new_XtY"] + + def updateEndInputAttributes(self): + return ["theta","XtX","XtY"] + + def updateEndOutputAttributes(self): + return ["new_theta","b","W","regularization_term"] # CHECK: WILL b AND W CONTAIN OLD OR NEW THETA? @todo i.e. order of computation = ? + + def parameterAttributes(self): + return ["b","W"] + + def defaultOutputFields(self, input_fields): + output_fields = ["output"] + if "target" in input_fields: + output_fields.append("squared_error") + return output_fields + + def __init__(self): + self._input = t.matrix('input') # n_examples x n_inputs + self._target = t.matrix('target') # n_examples x n_outputs + self._lambda = as_scalar(0.,'lambda') + self._theta = t.matrix('theta') + self._W = self._theta[:,1:] + self._b = self._theta[:,0] + self._XtX = t.matrix('XtX') + self._XtY = t.matrix('XtY') + self._extended_input = t.prepend_one_to_each_row(self._input) + self._output = t.dot(self._input,self._W.T) + self._b # (n_examples , n_outputs) matrix + self._squared_error = t.sum_within_rows(t.sqr(self._output-self._target)) # (n_examples ) vector + self._regularizer = self._lambda * t.dot(self._W,self._W) + self._new_XtX = add_inplace(self._XtX,t.dot(self._extended_input.T,self._extended_input)) + self._new_XtY = add_inplace(self._XtY,t.dot(self._extended_input.T,self._target)) + self._new_theta = t.solve_inplace(self._theta,self._XtX,self._XtY) + + OneShotTLearner.__init__(self) + + def allocate(self,minibatch): + minibatch_n_inputs = minibatch["input"].shape[1] + minibatch_n_outputs = minibatch["target"].shape[1] + if not self._n_inputs: + self._n_inputs = minibatch_n_inputs + self._n_outputs = minibatch_n_outputs + self.XtX = numpy.zeros((1+self._n_inputs,1+self._n_inputs)) + self.XtY = numpy.zeros((1+self._n_inputs,self._n_outputs)) + self.theta = numpy.zeros((self._n_outputs,1+self._n_inputs)) + self.forget() + elif self._n_inputs!=minibatch_n_inputs or self._n_outputs!=minibatch_n_outputs: + # if the input or target changes dimension on the fly, we resize and forget everything + self.forget() + + def forget(self): + if self._n_inputs and self._n_outputs: + self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) + self.XtY.resize((1+self.n_inputs,self.n_outputs)) + self.XtX.data[:,:]=0 + self.XtY.data[:,:]=0 + numpy.diag(self.XtX.data)[1:]=self.lambda +