Mercurial > pylearn
comparison sandbox/sparse_random_autoassociator/model.py @ 393:36baeb7125a4
Made sandbox directory
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 18:46:26 -0400 |
parents | sparse_random_autoassociator/model.py@42cc94cf6c12 |
children |
comparison
equal
deleted
inserted
replaced
392:e2cb8d489908 | 393:36baeb7125a4 |
---|---|
1 """ | |
2 The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason | |
3 Weston's sampling trick (2008). | |
4 """ | |
5 | |
6 from graph import trainfn | |
7 import parameters | |
8 | |
9 import globals | |
10 from globals import LR | |
11 | |
12 import numpy | |
13 import random | |
14 random.seed(globals.SEED) | |
15 | |
16 def _select_indices(instance): | |
17 """ | |
18 Choose nonzero and zero indices (feature columns) of the instance. | |
19 We select B{all} nonzero indices. | |
20 We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly, | |
21 without replacement. | |
22 @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter | |
23 an endless loop. | |
24 @return: (nonzero_indices, zero_indices) | |
25 """ | |
26 # Get the nonzero indices | |
27 nonzero_indices = instance.keys() | |
28 nonzero_indices.sort() | |
29 | |
30 # Get the zero indices | |
31 # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop. | |
32 zero_indices = [] | |
33 while len(zero_indices) < globals.ZERO_SAMPLE_SIZE: | |
34 idx = random.randint(0, globals.INPUT_DIMENSION - 1) | |
35 if idx in nonzero_indices or idx in zero_indices: continue | |
36 zero_indices.append(idx) | |
37 zero_indices.sort() | |
38 | |
39 return (nonzero_indices, zero_indices) | |
40 | |
41 class Model: | |
42 def __init__(self): | |
43 self.parameters = parameters.Parameters(randomly_initialize=True) | |
44 | |
45 def update(self, instance): | |
46 """ | |
47 Update the L{Model} using one training instance. | |
48 @param instance: A dict from feature index to (non-zero) value. | |
49 @todo: Should assert that nonzero_indices and zero_indices | |
50 are correct (i.e. are truly nonzero/zero). | |
51 """ | |
52 (nonzero_indices, zero_indices) = _select_indices(instance) | |
53 # No update if there aren't any non-zeros. | |
54 if len(nonzero_indices) == 0: return | |
55 xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices]) | |
56 print | |
57 print "xnonzero:", xnonzero | |
58 | |
59 (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) | |
60 print "OLD ynonzero:", ynonzero | |
61 print "OLD yzero:", yzero | |
62 print "OLD total loss:", loss | |
63 | |
64 # SGD update | |
65 self.parameters.w1[nonzero_indices, :] -= LR * gw1nonzero | |
66 self.parameters.b1 -= LR * gb1 | |
67 self.parameters.w2[:, nonzero_indices] -= LR * gw2nonzero | |
68 self.parameters.w2[:, zero_indices] -= LR * gw2zero | |
69 self.parameters.b2[nonzero_indices] -= LR * gb2nonzero | |
70 self.parameters.b2[zero_indices] -= LR * gb2zero | |
71 | |
72 # Recompute the loss, to make sure it's descreasing | |
73 (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) | |
74 print "NEW ynonzero:", ynonzero | |
75 print "NEW yzero:", yzero | |
76 print "NEW total loss:", loss |