Mercurial > ift6266
annotate writeup/nips2010_submission.tex @ 566:b9b811e886ae
Small fixes
author | Olivier Delalleau <delallea@iro> |
---|---|
date | Thu, 03 Jun 2010 13:16:00 -0400 |
parents | dc5c3f538a05 |
children | ae6ba0309bf9 |
rev | line source |
---|---|
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
1 \documentclass{article} % For LaTeX2e |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
2 \usepackage{nips10submit_e,times} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
3 \usepackage{wrapfig} |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
4 \usepackage{amsthm,amsmath,bbm} |
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
5 \usepackage[psamsfonts]{amssymb} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
6 \usepackage{algorithm,algorithmic} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
7 \usepackage[utf8]{inputenc} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
8 \usepackage{graphicx,subfigure} |
469 | 9 \usepackage[numbers]{natbib} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
10 |
523 | 11 %\setlength\parindent{0mm} |
12 | |
482
ce69aa9204d8
changement au titre et reecriture abstract
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
480
diff
changeset
|
13 \title{Deep Self-Taught Learning for Handwritten Character Recognition} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
14 \author{The IFT6266 Gang} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
15 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
16 \begin{document} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
17 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
18 %\makeanontitle |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
19 \maketitle |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
20 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
21 \vspace*{-2mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
22 \begin{abstract} |
554 | 23 Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by {\em out-of-distribution examples} and show that {\em deep learners benefit more from them than a corresponding shallow learner}, in the area of handwritten character recognition. In fact, we show that they reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
24 \end{abstract} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
25 \vspace*{-3mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
26 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
27 \section{Introduction} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
28 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
29 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
30 Deep Learning has emerged as a promising new area of research in |
469 | 31 statistical machine learning (see~\citet{Bengio-2009} for a review). |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
32 Learning algorithms for deep architectures are centered on the learning |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
33 of useful representations of data, which are better suited to the task at hand. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
34 This is in great part inspired by observations of the mammalian visual cortex, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
35 which consists of a chain of processing elements, each of which is associated with a |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
36 different representation of the raw visual input. In fact, |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
37 it was found recently that the features learnt in deep architectures resemble |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
38 those observed in the first two of these stages (in areas V1 and V2 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
39 of visual cortex)~\citep{HonglakL2008}, and that they become more and |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
40 more invariant to factors of variation (such as camera movement) in |
501 | 41 higher layers~\citep{Goodfellow2009}. |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
42 Learning a hierarchy of features increases the |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
43 ease and practicality of developing representations that are at once |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
44 tailored to specific tasks, yet are able to borrow statistical strength |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
45 from other related tasks (e.g., modeling different kinds of objects). Finally, learning the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
46 feature representation can lead to higher-level (more abstract, more |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
47 general) features that are more robust to unanticipated sources of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
48 variance extant in real data. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
49 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
50 Whereas a deep architecture can in principle be more powerful than a |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
51 shallow one in terms of representation, depth appears to render the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
52 training problem more difficult in terms of optimization and local minima. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
53 It is also only recently that successful algorithms were proposed to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
54 overcome some of these difficulties. All are based on unsupervised |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
55 learning, often in an greedy layer-wise ``unsupervised pre-training'' |
469 | 56 stage~\citep{Bengio-2009}. One of these layer initialization techniques, |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
57 applied here, is the Denoising |
547 | 58 Auto-encoder~(DA)~\citep{VincentPLarochelleH2008-very-small} (see Figure~\ref{fig:da}), |
59 which | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
60 performed similarly or better than previously proposed Restricted Boltzmann |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
61 Machines in terms of unsupervised extraction of a hierarchy of features |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
62 useful for classification. The principle is that each layer starting from |
511
d057941417ed
a few changes in the first section
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
510
diff
changeset
|
63 the bottom is trained to encode its input (the output of the previous |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
64 layer) and to reconstruct it from a corrupted version. After this |
547 | 65 unsupervised initialization, the stack of DAs can be |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
66 converted into a deep supervised feedforward neural network and fine-tuned by |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
67 stochastic gradient descent. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
68 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
69 Self-taught learning~\citep{RainaR2007} is a paradigm that combines principles |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
70 of semi-supervised and multi-task learning: the learner can exploit examples |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
71 that are unlabeled and possibly come from a distribution different from the target |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
72 distribution, e.g., from other classes than those of interest. |
532
2e33885730cf
changements aux charts.ods
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
529
diff
changeset
|
73 It has already been shown that deep learners can clearly take advantage of |
2e33885730cf
changements aux charts.ods
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
529
diff
changeset
|
74 unsupervised learning and unlabeled examples~\citep{Bengio-2009,WestonJ2008-small}, |
2e33885730cf
changements aux charts.ods
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
529
diff
changeset
|
75 but more needs to be done to explore the impact |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
76 of {\em out-of-distribution} examples and of the multi-task setting |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
77 (one exception is~\citep{CollobertR2008}, which uses very different kinds |
532
2e33885730cf
changements aux charts.ods
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
529
diff
changeset
|
78 of learning algorithms). In particular the {\em relative |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
79 advantage} of deep learning for these settings has not been evaluated. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
80 The hypothesis discussed in the conclusion is that a deep hierarchy of features |
512 | 81 may be better able to provide sharing of statistical strength |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
82 between different regions in input space or different tasks. |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
83 % |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
84 In this paper we ask the following questions: |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
85 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
86 %\begin{enumerate} |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
87 $\bullet$ %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
88 Do the good results previously obtained with deep architectures on the |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
89 MNIST digit images generalize to the setting of a much larger and richer (but similar) |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
90 dataset, the NIST special database 19, with 62 classes and around 800k examples? |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
91 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
92 $\bullet$ %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
93 To what extent does the perturbation of input images (e.g. adding |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
94 noise, affine transformations, background images) make the resulting |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
95 classifiers better not only on similarly perturbed images but also on |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
96 the {\em original clean examples}? |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
97 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
98 $\bullet$ %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
99 Do deep architectures {\em benefit more from such out-of-distribution} |
469 | 100 examples, i.e. do they benefit more from the self-taught learning~\citep{RainaR2007} framework? |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
101 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
102 $\bullet$ %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
103 Similarly, does the feature learning step in deep learning algorithms benefit more |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
104 from training with moderately different classes (i.e. a multi-task learning scenario) than |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
105 a corresponding shallow and purely supervised architecture? |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
106 %\end{enumerate} |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
107 |
511
d057941417ed
a few changes in the first section
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
510
diff
changeset
|
108 Our experimental results provide positive evidence towards all of these questions. |
547 | 109 To achieve these results, we introduce in the next section a sophisticated system |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
110 for stochastically transforming character images and then explain the methodology. |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
111 The conclusion discusses |
547 | 112 the more general question of why deep learners may benefit so much from |
113 the self-taught learning framework. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
114 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
115 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
116 \section{Perturbation and Transformation of Character Images} |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
117 \label{s:perturbations} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
118 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
119 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
120 \begin{wrapfigure}[8]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
121 %\begin{minipage}[b]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
122 \vspace*{-5mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
123 \begin{center} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
124 \includegraphics[scale=.4]{images/Original.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
125 {\bf Original} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
126 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
127 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
128 %\vspace{0.7cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
129 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
130 %\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} |
467 | 131 This section describes the different transformations we used to stochastically |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
132 transform $32 \times 32$ source images (such as the one on the left) |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
133 in order to obtain data from a larger distribution which |
547 | 134 covers a domain substantially larger than the clean characters distribution from |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
135 which we start. |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
136 Although character transformations have been used before to |
547 | 137 improve character recognizers, this effort is on a large scale both |
138 in number of classes and in the complexity of the transformations, hence | |
139 in the complexity of the learning task. | |
140 More details can | |
469 | 141 be found in this technical report~\citep{ift6266-tr-anonymous}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
142 The code for these transformations (mostly python) is available at |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
143 {\tt http://anonymous.url.net}. All the modules in the pipeline share |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
144 a global control parameter ($0 \le complexity \le 1$) that allows one to modulate the |
467 | 145 amount of deformation or noise introduced. |
146 There are two main parts in the pipeline. The first one, | |
147 from slant to pinch below, performs transformations. The second | |
148 part, from blur to contrast, adds different kinds of noise. | |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
149 %\end{minipage} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
150 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
151 \vspace*{1mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
152 %\subsection{Transformations} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
153 {\large\bf 2.1 Transformations} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
154 \vspace*{1mm} |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
155 |
501 | 156 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
157 \begin{wrapfigure}[7]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
158 %\begin{minipage}[b]{0.14\linewidth} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
159 %\centering |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
160 \begin{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
161 \vspace*{-5mm} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
162 \includegraphics[scale=.4]{images/Thick_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
163 {\bf Thickness} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
164 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
165 %\vspace{.6cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
166 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
167 %\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
168 \end{wrapfigure} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
169 To change character {\bf thickness}, morphological operators of dilation and erosion~\citep{Haralick87,Serra82} |
467 | 170 are applied. The neighborhood of each pixel is multiplied |
171 element-wise with a {\em structuring element} matrix. | |
172 The pixel value is replaced by the maximum or the minimum of the resulting | |
173 matrix, respectively for dilation or erosion. Ten different structural elements with | |
174 increasing dimensions (largest is $5\times5$) were used. For each image, | |
175 randomly sample the operator type (dilation or erosion) with equal probability and one structural | |
541 | 176 element from a subset of the $n=round(m \times complexity)$ smallest structuring elements |
177 where $m=10$ for dilation and $m=6$ for erosion (to avoid completely erasing thin characters). | |
178 A neutral element (no transformation) | |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
179 is always present in the set. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
180 %\vspace{.4cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
181 %\end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
182 %\vspace{-.7cm} |
523 | 183 |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
184 \begin{minipage}[b]{0.14\linewidth} |
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
185 \centering |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
186 \includegraphics[scale=.4]{images/Slant_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
187 {\bf Slant} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
188 \end{minipage}% |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
189 \hspace{0.3cm} |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
190 \begin{minipage}[b]{0.83\linewidth} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
191 %\centering |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
192 To produce {\bf slant}, each row of the image is shifted |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
193 proportionally to its height: $shift = round(slant \times height)$. |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
194 $slant \sim U[-complexity,complexity]$. |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
195 The shift is randomly chosen to be either to the left or to the right. |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
196 \vspace{1.1cm} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
197 \end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
198 %\vspace*{-4mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
199 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
200 %\begin{minipage}[b]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
201 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
202 \begin{wrapfigure}[8]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
203 \vspace*{-6mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
204 \begin{center} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
205 \includegraphics[scale=.4]{images/Affine_only.png}\\ |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
206 {\bf Affine Transformation} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
207 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
208 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
209 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
210 %\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
211 A $2 \times 3$ {\bf affine transform} matrix (with |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
212 parameters $(a,b,c,d,e,f)$) is sampled according to the $complexity$. |
541 | 213 Output pixel $(x,y)$ takes the value of input pixel |
214 nearest to $(ax+by+c,dx+ey+f)$, | |
215 producing scaling, translation, rotation and shearing. | |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
216 Marginal distributions of $(a,b,c,d,e,f)$ have been tuned to |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
217 forbid large rotations (to avoid confusing classes) but to give good |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
218 variability of the transformation: $a$ and $d$ $\sim U[1-3 |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
219 complexity,1+3\,complexity]$, $b$ and $e$ $\sim U[-3 \,complexity,3\, |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
220 complexity]$, and $c$ and $f \sim U[-4 \,complexity, 4 \, |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
221 complexity]$.\\ |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
222 %\end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
223 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
224 \vspace*{-4.5mm} |
523 | 225 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
226 \begin{minipage}[t]{\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
227 \begin{wrapfigure}[7]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
228 %\hspace*{-8mm}\begin{minipage}[b]{0.25\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
229 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
230 \begin{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
231 \vspace*{-4mm} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
232 \includegraphics[scale=.4]{images/Localelasticdistorsions_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
233 {\bf Local Elastic} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
234 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
235 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
236 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
237 %\hspace{-3mm}\begin{minipage}[b]{0.85\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
238 %\vspace*{-20mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
239 The {\bf local elastic} deformation |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
240 module induces a ``wiggly'' effect in the image, following~\citet{SimardSP03-short}, |
467 | 241 which provides more details. |
541 | 242 The intensity of the displacement fields is given by |
243 $\alpha = \sqrt[3]{complexity} \times 10.0$, which are | |
244 convolved with a Gaussian 2D kernel (resulting in a blur) of | |
245 standard deviation $\sigma = 10 - 7 \times\sqrt[3]{complexity}$. | |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
246 %\vspace{.9cm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
247 \end{minipage} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
248 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
249 \vspace*{5mm} |
523 | 250 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
251 %\begin{minipage}[b]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
252 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
253 \begin{wrapfigure}[7]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
254 \vspace*{-5mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
255 \begin{center} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
256 \includegraphics[scale=.4]{images/Pinch_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
257 {\bf Pinch} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
258 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
259 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
260 %\vspace{.6cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
261 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
262 %\hspace{0.3cm}\begin{minipage}[b]{0.86\linewidth} |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
263 The {\bf pinch} module applies the ``Whirl and pinch'' GIMP filter with whirl set to 0. |
541 | 264 A pinch is ``similar to projecting the image onto an elastic |
521
13816dbef6ed
des choses ont disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
520
diff
changeset
|
265 surface and pressing or pulling on the center of the surface'' (GIMP documentation manual). |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
266 For a square input image, draw a radius-$r$ disk |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
267 around its center $C$. Any pixel $P$ belonging to |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
268 that disk has its value replaced by |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
269 the value of a ``source'' pixel in the original image, |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
270 on the line that goes through $C$ and $P$, but |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
271 at some other distance $d_2$. Define $d_1=distance(P,C)$ |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
272 and $d_2 = sin(\frac{\pi{}d_1}{2r})^{-pinch} \times |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
273 d_1$, where $pinch$ is a parameter of the filter. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
274 The actual value is given by bilinear interpolation considering the pixels |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
275 around the (non-integer) source position thus found. |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
276 Here $pinch \sim U[-complexity, 0.7 \times complexity]$. |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
277 %\vspace{1.5cm} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
278 %\end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
279 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
280 \vspace{2mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
281 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
282 {\large\bf 2.2 Injecting Noise} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
283 %\subsection{Injecting Noise} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
284 \vspace{2mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
285 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
286 %\vspace*{-.2cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
287 \begin{minipage}[t]{0.14\linewidth} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
288 \centering |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
289 \vspace*{-2mm} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
290 \includegraphics[scale=.4]{images/Motionblur_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
291 {\bf Motion Blur} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
292 \end{minipage}% |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
293 \hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
294 %\vspace*{.5mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
295 The {\bf motion blur} module is GIMP's ``linear motion blur'', which |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
296 has parameters $length$ and $angle$. The value of |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
297 a pixel in the final image is approximately the mean of the first $length$ pixels |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
298 found by moving in the $angle$ direction, |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
299 $angle \sim U[0,360]$ degrees, and $length \sim {\rm Normal}(0,(3 \times complexity)^2)$. |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
300 \vspace{5mm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
301 \end{minipage} |
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
302 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
303 \vspace*{1mm} |
523 | 304 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
305 \begin{minipage}[t]{0.14\linewidth} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
306 \centering |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
307 \includegraphics[scale=.4]{images/occlusion_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
308 {\bf Occlusion} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
309 %\vspace{.5cm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
310 \end{minipage}% |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
311 \hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
312 \vspace*{-18mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
313 The {\bf occlusion} module selects a random rectangle from an {\em occluder} character |
544
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
314 image and places it over the original {\em occluded} |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
315 image. Pixels are combined by taking the max(occluder, occluded), |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
316 i.e. keeping the lighter ones. |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
317 The rectangle corners |
467 | 318 are sampled so that larger complexity gives larger rectangles. |
319 The destination position in the occluded image are also sampled | |
544
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
320 according to a normal distribution (more details in~\citet{ift6266-tr-anonymous}). |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
321 This module is skipped with probability 60\%. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
322 %\vspace{7mm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
323 \end{minipage} |
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
324 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
325 \vspace*{1mm} |
523 | 326 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
327 \begin{wrapfigure}[8]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
328 \vspace*{-6mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
329 \begin{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
330 %\begin{minipage}[t]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
331 %\centering |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
332 \includegraphics[scale=.4]{images/Bruitgauss_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
333 {\bf Gaussian Smoothing} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
334 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
335 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
336 %\vspace{.5cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
337 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
338 %\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
339 With the {\bf Gaussian smoothing} module, |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
340 different regions of the image are spatially smoothed. |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
341 This is achieved by first convolving |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
342 the image with an isotropic Gaussian kernel of |
495 | 343 size and variance chosen uniformly in the ranges $[12,12 + 20 \times |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
344 complexity]$ and $[2,2 + 6 \times complexity]$. This filtered image is normalized |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
345 between $0$ and $1$. We also create an isotropic weighted averaging window, of the |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
346 kernel size, with maximum value at the center. For each image we sample |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
347 uniformly from $3$ to $3 + 10 \times complexity$ pixels that will be |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
348 averaging centers between the original image and the filtered one. We |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
349 initialize to zero a mask matrix of the image size. For each selected pixel |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
350 we add to the mask the averaging window centered on it. The final image is |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
351 computed from the following element-wise operation: $\frac{image + filtered\_image |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
352 \times mask}{mask+1}$. |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
353 This module is skipped with probability 75\%. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
354 %\end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
355 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
356 \newpage |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
357 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
358 \vspace*{-9mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
359 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
360 %\hspace*{-3mm}\begin{minipage}[t]{0.18\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
361 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
362 \begin{minipage}[t]{\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
363 \begin{wrapfigure}[7]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
364 \vspace*{-5mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
365 \begin{center} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
366 \includegraphics[scale=.4]{images/Permutpixel_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
367 {\small\bf Permute Pixels} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
368 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
369 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
370 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
371 %\hspace{-0cm}\begin{minipage}[t]{0.86\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
372 %\vspace*{-20mm} |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
373 This module {\bf permutes neighbouring pixels}. It first selects a |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
374 fraction $\frac{complexity}{3}$ of pixels randomly in the image. Each |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
375 of these pixels is then sequentially exchanged with a random pixel |
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
376 among its four nearest neighbors (on its left, right, top or bottom). |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
377 This module is skipped with probability 80\%.\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
378 \vspace*{1mm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
379 \end{minipage} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
380 |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
381 \vspace{-3mm} |
523 | 382 |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
383 \begin{minipage}[t]{\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
384 \begin{wrapfigure}[7]{l}{0.15\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
385 %\vspace*{-3mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
386 \begin{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
387 %\hspace*{-3mm}\begin{minipage}[t]{0.18\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
388 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
389 \vspace*{-5mm} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
390 \includegraphics[scale=.4]{images/Distorsiongauss_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
391 {\small \bf Gauss. Noise} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
392 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
393 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
394 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
395 %\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
396 \vspace*{12mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
397 The {\bf Gaussian noise} module simply adds, to each pixel of the image independently, a |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
398 noise $\sim Normal(0,(\frac{complexity}{10})^2)$. |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
399 This module is skipped with probability 70\%. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
400 %\vspace{1.1cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
401 \end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
402 |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
403 \vspace*{1.2cm} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
404 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
405 \begin{minipage}[t]{\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
406 \begin{minipage}[t]{0.14\linewidth} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
407 \centering |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
408 \includegraphics[scale=.4]{images/background_other_only.png}\\ |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
409 {\small \bf Bg Image} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
410 \end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
411 \hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
412 \vspace*{-18mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
413 Following~\citet{Larochelle-jmlr-2009}, the {\bf background image} module adds a random |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
414 background image behind the letter, from a randomly chosen natural image, |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
415 with contrast adjustments depending on $complexity$, to preserve |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
416 more or less of the original character image. |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
417 %\vspace{.8cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
418 \end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
419 \end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
420 %\vspace{-.7cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
421 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
422 \begin{minipage}[t]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
423 \centering |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
424 \includegraphics[scale=.4]{images/Poivresel_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
425 {\small \bf Salt \& Pepper} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
426 \end{minipage}% |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
427 \hspace{0.3cm}\begin{minipage}[t]{0.83\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
428 \vspace*{-18mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
429 The {\bf salt and pepper noise} module adds noise $\sim U[0,1]$ to random subsets of pixels. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
430 The number of selected pixels is $0.2 \times complexity$. |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
431 This module is skipped with probability 75\%. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
432 %\vspace{.9cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
433 \end{minipage} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
434 %\vspace{-.7cm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
435 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
436 \vspace{1mm} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
437 |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
438 \begin{minipage}[t]{\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
439 \begin{wrapfigure}[7]{l}{0.14\textwidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
440 %\begin{minipage}[t]{0.14\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
441 %\centering |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
442 \begin{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
443 \vspace*{-4mm} |
558
143a1467f157
Fixed compilation: .PNG -> .png
Olivier Delalleau <delallea@iro>
parents:
555
diff
changeset
|
444 \hspace*{-1mm}\includegraphics[scale=.4]{images/Rature_only.png}\\ |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
445 {\bf Scratches} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
446 %\end{minipage}% |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
447 \end{center} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
448 \end{wrapfigure} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
449 %\hspace{0.3cm}\begin{minipage}[t]{0.86\linewidth} |
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
450 %\vspace{.4cm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
451 The {\bf scratches} module places line-like white patches on the image. The |
517
0a5945249f2b
section 2, quick first pass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
511
diff
changeset
|
452 lines are heavily transformed images of the digit ``1'' (one), chosen |
544
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
453 at random among 500 such 1 images, |
467 | 454 randomly cropped and rotated by an angle $\sim Normal(0,(100 \times |
554 | 455 complexity)^2$ (in degrees), using bi-cubic interpolation. |
495 | 456 Two passes of a grey-scale morphological erosion filter |
467 | 457 are applied, reducing the width of the line |
458 by an amount controlled by $complexity$. | |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
459 This module is skipped with probability 85\%. The probabilities |
544
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
460 of applying 1, 2, or 3 patches are (50\%,30\%,20\%). |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
461 \end{minipage} |
523 | 462 |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
463 \vspace*{1mm} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
464 |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
465 \begin{minipage}[t]{0.25\linewidth} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
466 \centering |
559 | 467 \hspace*{-16mm}\includegraphics[scale=.4]{images/Contrast_only.png}\\ |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
468 {\bf Grey Level \& Contrast} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
469 \end{minipage}% |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
470 \hspace{-12mm}\begin{minipage}[t]{0.82\linewidth} |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
471 \vspace*{-18mm} |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
472 The {\bf grey level and contrast} module changes the contrast by changing grey levels, and may invert the image polarity (white |
544
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
473 to black and black to white). The contrast is $C \sim U[1-0.85 \times complexity,1]$ |
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
474 so the image is normalized into $[\frac{1-C}{2},1-\frac{1-C}{2}]$. The |
1cdfc17e890f
ca fitte maintenant
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
541
diff
changeset
|
475 polarity is inverted with probability 50\%. |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
476 %\vspace{.7cm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
477 \end{minipage} |
555
b6dfba0a110c
ameliorer l'aspect visuel, Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
554
diff
changeset
|
478 \vspace{2mm} |
551
8f365abf171d
separete the transmo image
Frederic Bastien <nouiz@nouiz.org>
parents:
550
diff
changeset
|
479 |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
480 |
499
2b58eda9fc08
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
495
diff
changeset
|
481 \iffalse |
523 | 482 \begin{figure}[ht] |
538 | 483 \centerline{\resizebox{.9\textwidth}{!}{\includegraphics{images/example_t.png}}}\\ |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
484 \caption{Illustration of the pipeline of stochastic |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
485 transformations applied to the image of a lower-case \emph{t} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
486 (the upper left image). Each image in the pipeline (going from |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
487 left to right, first top line, then bottom line) shows the result |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
488 of applying one of the modules in the pipeline. The last image |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
489 (bottom right) is used as training example.} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
490 \label{fig:pipeline} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
491 \end{figure} |
499
2b58eda9fc08
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
495
diff
changeset
|
492 \fi |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
493 |
560
dc5c3f538a05
Small fixes (typos / precisions)
Olivier Delalleau <delallea@iro>
parents:
559
diff
changeset
|
494 \vspace*{-3mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
495 \section{Experimental Setup} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
496 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
497 |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
498 Much previous work on deep learning had been performed on |
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
499 the MNIST digits task~\citep{Hinton06,ranzato-07-small,Bengio-nips-2006,Salakhutdinov+Hinton-2009}, |
472 | 500 with 60~000 examples, and variants involving 10~000 |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
501 examples~\citep{Larochelle-jmlr-toappear-2008,VincentPLarochelleH2008}. |
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
502 The focus here is on much larger training sets, from 10 times to |
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
503 to 1000 times larger, and 62 classes. |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
504 |
535 | 505 The first step in constructing the larger datasets (called NISTP and P07) is to sample from |
499
2b58eda9fc08
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
495
diff
changeset
|
506 a {\em data source}: {\bf NIST} (NIST database 19), {\bf Fonts}, {\bf Captchas}, |
2b58eda9fc08
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
495
diff
changeset
|
507 and {\bf OCR data} (scanned machine printed characters). Once a character |
547 | 508 is sampled from one of these sources (chosen randomly), the second step is to |
509 apply a pipeline of transformations and/or noise processes described in section \ref{s:perturbations}. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
510 |
547 | 511 To provide a baseline of error rate comparison we also estimate human performance |
512 on both the 62-class task and the 10-class digits task. | |
566 | 513 We compare the best Multi-Layer Perceptrons (MLP) against |
514 the best Stacked Denoising Auto-encoders (SDA), when | |
515 both models' hyper-parameters are selected to minimize the validation set error. | |
516 We also provide a comparison against a precise estimate | |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
517 of human performance obtained via Amazon's Mechanical Turk (AMT) |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
518 service (http://mturk.com). |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
519 AMT users are paid small amounts |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
520 of money to perform tasks for which human intelligence is required. |
522
d41926a68993
remis les choses qui avaient disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
521
diff
changeset
|
521 Mechanical Turk has been used extensively in natural language processing and vision. |
d41926a68993
remis les choses qui avaient disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
521
diff
changeset
|
522 %processing \citep{SnowEtAl2008} and vision |
d41926a68993
remis les choses qui avaient disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
521
diff
changeset
|
523 %\citep{SorokinAndForsyth2008,whitehill09}. |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
524 AMT users were presented |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
525 with 10 character images (from a test set) and asked to choose 10 corresponding ASCII |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
526 characters. They were forced to make a hard choice among the |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
527 62 or 10 character classes (all classes or digits only). |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
528 80 subjects classified 2500 images per (dataset,task) pair, |
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
529 with the guarantee that 3 different subjects classified each image, allowing |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
530 us to estimate inter-human variability (e.g a standard error of 0.1\% |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
531 on the average 18.2\% error done by humans on the 62-class task NIST test set). |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
532 |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
533 \vspace*{-3mm} |
472 | 534 \subsection{Data Sources} |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
535 \vspace*{-2mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
536 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
537 %\begin{itemize} |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
538 %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
539 {\bf NIST.} |
501 | 540 Our main source of characters is the NIST Special Database 19~\citep{Grother-1995}, |
472 | 541 widely used for training and testing character |
516
092dae9a5040
make the reference more compact.
Frederic Bastien <nouiz@nouiz.org>
parents:
514
diff
changeset
|
542 recognition systems~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005}. |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
543 The dataset is composed of 814255 digits and characters (upper and lower cases), with hand checked classifications, |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
544 extracted from handwritten sample forms of 3600 writers. The characters are labelled by one of the 62 classes |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
545 corresponding to ``0''-``9'',``A''-``Z'' and ``a''-``z''. The dataset contains 8 parts (partitions) of varying complexity. |
534 | 546 The fourth partition (called $hsf_4$, 82587 examples), |
547 experimentally recognized to be the most difficult one, is the one recommended | |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
548 by NIST as a testing set and is used in our work as well as some previous work~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005} |
534 | 549 for that purpose. We randomly split the remainder (731668 examples) into a training set and a validation set for |
550 model selection. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
551 The performances reported by previous work on that dataset mostly use only the digits. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
552 Here we use all the classes both in the training and testing phase. This is especially |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
553 useful to estimate the effect of a multi-task setting. |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
554 The distribution of the classes in the NIST training and test sets differs |
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
555 substantially, with relatively many more digits in the test set, and a more uniform distribution |
566 | 556 of letters in the test set (whereas in the training set they are distributed |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
557 more like in natural text). |
549 | 558 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
559 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
560 %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
561 {\bf Fonts.} |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
562 In order to have a good variety of sources we downloaded an important number of free fonts from: |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
563 {\tt http://cg.scs.carleton.ca/\textasciitilde luc/freefonts.html}. |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
564 % TODO: pointless to anonymize, it's not pointing to our work |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
565 Including the operating system's (Windows 7) fonts, there is a total of $9817$ different fonts that we can choose uniformly from. |
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
566 The chosen {\tt ttf} file is either used as input of the Captcha generator (see next item) or, by producing a corresponding image, |
479
6593e67381a3
Added transformation figure
Xavier Glorot <glorotxa@iro.umontreal.ca>
parents:
476
diff
changeset
|
567 directly as input to our models. |
549 | 568 \vspace*{-1mm} |
479
6593e67381a3
Added transformation figure
Xavier Glorot <glorotxa@iro.umontreal.ca>
parents:
476
diff
changeset
|
569 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
570 %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
571 {\bf Captchas.} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
572 The Captcha data source is an adaptation of the \emph{pycaptcha} library (a python based captcha generator library) for |
472 | 573 generating characters of the same format as the NIST dataset. This software is based on |
495 | 574 a random character class generator and various kinds of transformations similar to those described in the previous sections. |
472 | 575 In order to increase the variability of the data generated, many different fonts are used for generating the characters. |
495 | 576 Transformations (slant, distortions, rotation, translation) are applied to each randomly generated character with a complexity |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
577 depending on the value of the complexity parameter provided by the user of the data source. |
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
578 %Two levels of complexity are allowed and can be controlled via an easy to use facade class. %TODO: what's a facade class? |
549 | 579 \vspace*{-1mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
580 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
581 %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
582 {\bf OCR data.} |
472 | 583 A large set (2 million) of scanned, OCRed and manually verified machine-printed |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
584 characters where included as an |
472 | 585 additional source. This set is part of a larger corpus being collected by the Image Understanding |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
586 Pattern Recognition Research group led by Thomas Breuel at University of Kaiserslautern |
495 | 587 ({\tt http://www.iupr.com}), and which will be publicly released. |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
588 %TODO: let's hope that Thomas is not a reviewer! :) Seriously though, maybe we should anonymize this |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
589 %\end{itemize} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
590 |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
591 \vspace*{-3mm} |
472 | 592 \subsection{Data Sets} |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
593 \vspace*{-2mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
594 |
472 | 595 All data sets contain 32$\times$32 grey-level images (values in $[0,1]$) associated with a label |
596 from one of the 62 character classes. | |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
597 %\begin{itemize} |
549 | 598 \vspace*{-1mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
599 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
600 %\item |
534 | 601 {\bf NIST.} This is the raw NIST special database 19~\citep{Grother-1995}. It has |
535 | 602 \{651668 / 80000 / 82587\} \{training / validation / test\} examples. |
549 | 603 \vspace*{-1mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
604 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
605 %\item |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
606 {\bf P07.} This dataset is obtained by taking raw characters from all four of the above sources |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
607 and sending them through the transformation pipeline described in section \ref{s:perturbations}. |
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
608 For each new example to generate, a data source is selected with probability $10\%$ from the fonts, |
472 | 609 $25\%$ from the captchas, $25\%$ from the OCR data and $40\%$ from NIST. We apply all the transformations in the |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
610 order given above, and for each of them we sample uniformly a \emph{complexity} in the range $[0,0.7]$. |
535 | 611 It has \{81920000 / 80000 / 20000\} \{training / validation / test\} examples. |
549 | 612 \vspace*{-1mm} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
613 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
614 %\item |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
615 {\bf NISTP.} This one is equivalent to P07 (complexity parameter of $0.7$ with the same proportions of data sources) |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
616 except that we only apply |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
617 transformations from slant to pinch. Therefore, the character is |
495 | 618 transformed but no additional noise is added to the image, giving images |
534 | 619 closer to the NIST dataset. |
535 | 620 It has \{81920000 / 80000 / 20000\} \{training / validation / test\} examples. |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
621 %\end{itemize} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
622 |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
623 \vspace*{-3mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
624 \subsection{Models and their Hyperparameters} |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
625 \vspace*{-2mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
626 |
566 | 627 The experiments are performed using MLPs (with a single |
628 hidden layer) and SDAs. | |
553
8f6c09d1140f
ca fitte de nouveau
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
552
diff
changeset
|
629 \emph{Hyper-parameters are selected based on the {\bf NISTP} validation set error.} |
472 | 630 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
631 {\bf Multi-Layer Perceptrons (MLP).} |
472 | 632 Whereas previous work had compared deep architectures to both shallow MLPs and |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
633 SVMs, we only compared to MLPs here because of the very large datasets used |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
634 (making the use of SVMs computationally challenging because of their quadratic |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
635 scaling behavior). |
472 | 636 The MLP has a single hidden layer with $\tanh$ activation functions, and softmax (normalized |
520
18a6379999fd
more after lunch :)
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
519
diff
changeset
|
637 exponentials) on the output layer for estimating $P(class | image)$. |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
638 The number of hidden units is taken in $\{300,500,800,1000,1500\}$. |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
639 Training examples are presented in minibatches of size 20. A constant learning |
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
640 rate was chosen among $\{0.001, 0.01, 0.025, 0.075, 0.1, 0.5\}$ |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
641 through preliminary experiments (measuring performance on a validation set), |
566 | 642 and $0.1$ (which was found to work best) was then selected for optimizing on |
643 the whole training sets. | |
549 | 644 \vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
645 |
521
13816dbef6ed
des choses ont disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
520
diff
changeset
|
646 |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
647 {\bf Stacked Denoising Auto-Encoders (SDA).} |
472 | 648 Various auto-encoder variants and Restricted Boltzmann Machines (RBMs) |
649 can be used to initialize the weights of each layer of a deep MLP (with many hidden | |
520
18a6379999fd
more after lunch :)
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
519
diff
changeset
|
650 layers)~\citep{Hinton06,ranzato-07-small,Bengio-nips-2006}, |
18a6379999fd
more after lunch :)
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
519
diff
changeset
|
651 apparently setting parameters in the |
472 | 652 basin of attraction of supervised gradient descent yielding better |
653 generalization~\citep{Erhan+al-2010}. It is hypothesized that the | |
654 advantage brought by this procedure stems from a better prior, | |
655 on the one hand taking advantage of the link between the input | |
656 distribution $P(x)$ and the conditional distribution of interest | |
657 $P(y|x)$ (like in semi-supervised learning), and on the other hand | |
658 taking advantage of the expressive power and bias implicit in the | |
659 deep architecture (whereby complex concepts are expressed as | |
660 compositions of simpler ones through a deep hierarchy). | |
530
8fe77eac344f
Clarifying the experimental setup, typos here and there
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
524
diff
changeset
|
661 |
547 | 662 \begin{figure}[ht] |
663 \vspace*{-2mm} | |
664 \centerline{\resizebox{0.8\textwidth}{!}{\includegraphics{images/denoising_autoencoder_small.pdf}}} | |
549 | 665 \vspace*{-2mm} |
547 | 666 \caption{Illustration of the computations and training criterion for the denoising |
667 auto-encoder used to pre-train each layer of the deep architecture. Input $x$ of | |
668 the layer (i.e. raw input or output of previous layer) | |
669 is corrupted into $\tilde{x}$ and encoded into code $y$ by the encoder $f_\theta(\cdot)$. | |
670 The decoder $g_{\theta'}(\cdot)$ maps $y$ to reconstruction $z$, which | |
671 is compared to the uncorrupted input $x$ through the loss function | |
672 $L_H(x,z)$, whose expected value is approximately minimized during training | |
673 by tuning $\theta$ and $\theta'$.} | |
674 \label{fig:da} | |
675 \vspace*{-2mm} | |
676 \end{figure} | |
677 | |
472 | 678 Here we chose to use the Denoising |
566 | 679 Auto-encoder~\citep{VincentPLarochelleH2008} as the building block for |
472 | 680 these deep hierarchies of features, as it is very simple to train and |
532
2e33885730cf
changements aux charts.ods
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
529
diff
changeset
|
681 explain (see Figure~\ref{fig:da}, as well as |
521
13816dbef6ed
des choses ont disparu
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
520
diff
changeset
|
682 tutorial and code there: {\tt http://deeplearning.net/tutorial}), |
566 | 683 provides efficient inference, and yielded results |
472 | 684 comparable or better than RBMs in series of experiments |
519
eaa595ea2402
section 3 quickpass
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
518
diff
changeset
|
685 \citep{VincentPLarochelleH2008}. During training, a Denoising |
566 | 686 Auto-encoder is presented with a stochastically corrupted version |
472 | 687 of the input and trained to reconstruct the uncorrupted input, |
688 forcing the hidden units to represent the leading regularities in | |
535 | 689 the data. Once it is trained, in a purely unsupervised way, |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
690 its hidden units' activations can |
472 | 691 be used as inputs for training a second one, etc. |
692 After this unsupervised pre-training stage, the parameters | |
693 are used to initialize a deep MLP, which is fine-tuned by | |
694 the same standard procedure used to train them (see previous section). | |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
695 The SDA hyper-parameters are the same as for the MLP, with the addition of the |
472 | 696 amount of corruption noise (we used the masking noise process, whereby a |
697 fixed proportion of the input values, randomly selected, are zeroed), and a | |
698 separate learning rate for the unsupervised pre-training stage (selected | |
699 from the same above set). The fraction of inputs corrupted was selected | |
700 among $\{10\%, 20\%, 50\%\}$. Another hyper-parameter is the number | |
701 of hidden layers but it was fixed to 3 based on previous work with | |
547 | 702 SDAs on MNIST~\citep{VincentPLarochelleH2008}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
703 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
704 \vspace*{-1mm} |
523 | 705 |
706 \begin{figure}[ht] | |
541 | 707 \vspace*{-2mm} |
523 | 708 \centerline{\resizebox{.99\textwidth}{!}{\includegraphics{images/error_rates_charts.pdf}}} |
549 | 709 \vspace*{-3mm} |
547 | 710 \caption{SDAx are the {\bf deep} models. Error bars indicate a 95\% confidence interval. 0 indicates that the model was trained |
523 | 711 on NIST, 1 on NISTP, and 2 on P07. Left: overall results |
548
34cb28249de0
suggestions de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
547
diff
changeset
|
712 of all models, on NIST and NISTP test sets. |
523 | 713 Right: error rates on NIST test digits only, along with the previous results from |
714 literature~\citep{Granger+al-2007,Cortes+al-2000,Oliveira+al-2002-short,Milgram+al-2005} | |
715 respectively based on ART, nearest neighbors, MLPs, and SVMs.} | |
716 \label{fig:error-rates-charts} | |
541 | 717 \vspace*{-2mm} |
523 | 718 \end{figure} |
719 | |
720 | |
557
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
721 \begin{figure}[ht] |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
722 \vspace*{-3mm} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
723 \centerline{\resizebox{.99\textwidth}{!}{\includegraphics{images/improvements_charts.pdf}}} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
724 \vspace*{-3mm} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
725 \caption{Relative improvement in error rate due to self-taught learning. |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
726 Left: Improvement (or loss, when negative) |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
727 induced by out-of-distribution examples (perturbed data). |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
728 Right: Improvement (or loss, when negative) induced by multi-task |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
729 learning (training on all classes and testing only on either digits, |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
730 upper case, or lower-case). The deep learner (SDA) benefits more from |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
731 both self-taught learning scenarios, compared to the shallow MLP.} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
732 \label{fig:improvements-charts} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
733 \vspace*{-2mm} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
734 \end{figure} |
17d16700e0c8
encore du visuel de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
555
diff
changeset
|
735 |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
736 \section{Experimental Results} |
549 | 737 \vspace*{-2mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
738 |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
739 %\vspace*{-1mm} |
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
740 %\subsection{SDA vs MLP vs Humans} |
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
741 %\vspace*{-1mm} |
535 | 742 The models are either trained on NIST (MLP0 and SDA0), |
743 NISTP (MLP1 and SDA1), or P07 (MLP2 and SDA2), and tested | |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
744 on either NIST, NISTP or P07, either on the 62-class task |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
745 or on the 10-digits task. |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
746 Figure~\ref{fig:error-rates-charts} summarizes the results obtained, |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
747 comparing humans, the three MLPs (MLP0, MLP1, MLP2) and the three SDAs (SDA0, SDA1, |
486
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
748 SDA2), along with the previous results on the digits NIST special database |
566 | 749 19 test set from the literature, respectively based on ARTMAP neural |
486
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
750 networks ~\citep{Granger+al-2007}, fast nearest-neighbor search |
516
092dae9a5040
make the reference more compact.
Frederic Bastien <nouiz@nouiz.org>
parents:
514
diff
changeset
|
751 ~\citep{Cortes+al-2000}, MLPs ~\citep{Oliveira+al-2002-short}, and SVMs |
486
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
752 ~\citep{Milgram+al-2005}. More detailed and complete numerical results |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
753 (figures and tables, including standard errors on the error rates) can be |
535 | 754 found in Appendix I of the supplementary material. |
755 The deep learner not only outperformed the shallow ones and | |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
756 previously published performance (in a statistically and qualitatively |
535 | 757 significant way) but when trained with perturbed data |
758 reaches human performance on both the 62-class task | |
523 | 759 and the 10-class (digits) task. |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
760 17\% error (SDA1) or 18\% error (humans) may seem large but a large |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
761 majority of the errors from humans and from SDA1 are from out-of-context |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
762 confusions (e.g. a vertical bar can be a ``1'', an ``l'' or an ``L'', and a |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
763 ``c'' and a ``C'' are often indistinguishible). |
523 | 764 |
765 In addition, as shown in the left of | |
766 Figure~\ref{fig:improvements-charts}, the relative improvement in error | |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
767 rate brought by self-taught learning is greater for the SDA, and these |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
768 differences with the MLP are statistically and qualitatively |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
769 significant. |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
770 The left side of the figure shows the improvement to the clean |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
771 NIST test set error brought by the use of out-of-distribution examples |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
772 (i.e. the perturbed examples examples from NISTP or P07). |
547 | 773 Relative percent change is measured by taking |
548
34cb28249de0
suggestions de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
547
diff
changeset
|
774 $100 \% \times$ (original model's error / perturbed-data model's error - 1). |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
775 The right side of |
523 | 776 Figure~\ref{fig:improvements-charts} shows the relative improvement |
486
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
777 brought by the use of a multi-task setting, in which the same model is |
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
778 trained for more classes than the target classes of interest (i.e. training |
877af97ee193
section resultats et appendice
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
485
diff
changeset
|
779 with all 62 classes when the target classes are respectively the digits, |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
780 lower-case, or upper-case characters). Again, whereas the gain from the |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
781 multi-task setting is marginal or negative for the MLP, it is substantial |
547 | 782 for the SDA. Note that to simplify these multi-task experiments, only the original |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
783 NIST dataset is used. For example, the MLP-digits bar shows the relative |
547 | 784 percent improvement in MLP error rate on the NIST digits test set |
566 | 785 is $100\% \times$ (single-task |
786 model's error / multi-task model's error - 1). The single-task model is | |
493
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
787 trained with only 10 outputs (one per digit), seeing only digit examples, |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
788 whereas the multi-task model is trained with 62 outputs, with all 62 |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
789 character classes as examples. Hence the hidden units are shared across |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
790 all tasks. For the multi-task model, the digit error rate is measured by |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
791 comparing the correct digit class with the output class associated with the |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
792 maximum conditional probability among only the digit classes outputs. The |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
793 setting is similar for the other two target classes (lower case characters |
a194ce5a4249
difference stat. sign.
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
491
diff
changeset
|
794 and upper case characters). |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
795 %\vspace*{-1mm} |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
796 %\subsection{Perturbed Training Data More Helpful for SDA} |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
797 %\vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
798 |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
799 %\vspace*{-1mm} |
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
800 %\subsection{Multi-Task Learning Effects} |
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
801 %\vspace*{-1mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
802 |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
803 \iffalse |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
804 As previously seen, the SDA is better able to benefit from the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
805 transformations applied to the data than the MLP. In this experiment we |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
806 define three tasks: recognizing digits (knowing that the input is a digit), |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
807 recognizing upper case characters (knowing that the input is one), and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
808 recognizing lower case characters (knowing that the input is one). We |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
809 consider the digit classification task as the target task and we want to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
810 evaluate whether training with the other tasks can help or hurt, and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
811 whether the effect is different for MLPs versus SDAs. The goal is to find |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
812 out if deep learning can benefit more (or less) from multiple related tasks |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
813 (i.e. the multi-task setting) compared to a corresponding purely supervised |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
814 shallow learner. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
815 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
816 We use a single hidden layer MLP with 1000 hidden units, and a SDA |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
817 with 3 hidden layers (1000 hidden units per layer), pre-trained and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
818 fine-tuned on NIST. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
819 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
820 Our results show that the MLP benefits marginally from the multi-task setting |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
821 in the case of digits (5\% relative improvement) but is actually hurt in the case |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
822 of characters (respectively 3\% and 4\% worse for lower and upper class characters). |
495 | 823 On the other hand the SDA benefited from the multi-task setting, with relative |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
824 error rate improvements of 27\%, 15\% and 13\% respectively for digits, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
825 lower and upper case characters, as shown in Table~\ref{tab:multi-task}. |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
826 \fi |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
827 |
475 | 828 |
549 | 829 \vspace*{-2mm} |
529 | 830 \section{Conclusions and Discussion} |
549 | 831 \vspace*{-2mm} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
832 |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
833 We have found that the self-taught learning framework is more beneficial |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
834 to a deep learner than to a traditional shallow and purely |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
835 supervised learner. More precisely, |
520
18a6379999fd
more after lunch :)
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
519
diff
changeset
|
836 the answers are positive for all the questions asked in the introduction. |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
837 %\begin{itemize} |
487 | 838 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
839 $\bullet$ %\item |
547 | 840 {\bf Do the good results previously obtained with deep architectures on the |
549 | 841 MNIST digits generalize to a much larger and richer (but similar) |
547 | 842 dataset, the NIST special database 19, with 62 classes and around 800k examples}? |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
843 Yes, the SDA {\bf systematically outperformed the MLP and all the previously |
529 | 844 published results on this dataset} (the ones that we are aware of), {\bf in fact reaching human-level |
845 performance} at around 17\% error on the 62-class task and 1.4\% on the digits. | |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
846 |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
847 $\bullet$ %\item |
547 | 848 {\bf To what extent do self-taught learning scenarios help deep learners, |
849 and do they help them more than shallow supervised ones}? | |
529 | 850 We found that distorted training examples not only made the resulting |
851 classifier better on similarly perturbed images but also on | |
852 the {\em original clean examples}, and more importantly and more novel, | |
853 that deep architectures benefit more from such {\em out-of-distribution} | |
854 examples. MLPs were helped by perturbed training examples when tested on perturbed input | |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
855 images (65\% relative improvement on NISTP) |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
856 but only marginally helped (5\% relative improvement on all classes) |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
857 or even hurt (10\% relative loss on digits) |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
858 with respect to clean examples . On the other hand, the deep SDAs |
472 | 859 were very significantly boosted by these out-of-distribution examples. |
529 | 860 Similarly, whereas the improvement due to the multi-task setting was marginal or |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
861 negative for the MLP (from +5.6\% to -3.6\% relative change), |
547 | 862 it was very significant for the SDA (from +13\% to +27\% relative change), |
863 which may be explained by the arguments below. | |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
864 %\end{itemize} |
472 | 865 |
524
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
866 In the original self-taught learning framework~\citep{RainaR2007}, the |
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
867 out-of-sample examples were used as a source of unsupervised data, and |
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
868 experiments showed its positive effects in a \emph{limited labeled data} |
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
869 scenario. However, many of the results by \citet{RainaR2007} (who used a |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
870 shallow, sparse coding approach) suggest that the {\em relative gain of self-taught |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
871 learning vs ordinary supervised learning} diminishes as the number of labeled examples increases. |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
872 We note instead that, for deep |
524
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
873 architectures, our experiments show that such a positive effect is accomplished |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
874 even in a scenario with a \emph{very large number of labeled examples}, |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
875 i.e., here, the relative gain of self-taught learning is probably preserved |
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
876 in the asymptotic regime. |
524
07bc0ca8d246
added paragraph comparing "our" self-taught learning with "theirs"
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
523
diff
changeset
|
877 |
547 | 878 {\bf Why would deep learners benefit more from the self-taught learning framework}? |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
879 The key idea is that the lower layers of the predictor compute a hierarchy |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
880 of features that can be shared across tasks or across variants of the |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
881 input distribution. Intermediate features that can be used in different |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
882 contexts can be estimated in a way that allows to share statistical |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
883 strength. Features extracted through many levels are more likely to |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
884 be more abstract (as the experiments in~\citet{Goodfellow2009} suggest), |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
885 increasing the likelihood that they would be useful for a larger array |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
886 of tasks and input conditions. |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
887 Therefore, we hypothesize that both depth and unsupervised |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
888 pre-training play a part in explaining the advantages observed here, and future |
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
889 experiments could attempt at teasing apart these factors. |
529 | 890 And why would deep learners benefit from the self-taught learning |
891 scenarios even when the number of labeled examples is very large? | |
892 We hypothesize that this is related to the hypotheses studied | |
893 in~\citet{Erhan+al-2010}. Whereas in~\citet{Erhan+al-2010} | |
894 it was found that online learning on a huge dataset did not make the | |
895 advantage of the deep learning bias vanish, a similar phenomenon | |
896 may be happening here. We hypothesize that unsupervised pre-training | |
897 of a deep hierarchy with self-taught learning initializes the | |
898 model in the basin of attraction of supervised gradient descent | |
899 that corresponds to better generalization. Furthermore, such good | |
900 basins of attraction are not discovered by pure supervised learning | |
901 (with or without self-taught settings), and more labeled examples | |
550
662299f265ab
suggestions from Ian
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
549
diff
changeset
|
902 does not allow the model to go from the poorer basins of attraction discovered |
529 | 903 by the purely supervised shallow models to the kind of better basins associated |
904 with deep learning and self-taught learning. | |
502
2b35a6e5ece4
changements de Myriam
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
501
diff
changeset
|
905 |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
906 A Flash demo of the recognizer (where both the MLP and the SDA can be compared) |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
907 can be executed on-line at {\tt http://deep.host22.com}. |
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
908 |
498
7ff00c27c976
add missing file for bibtex and make it smaller.
Frederic Bastien <nouiz@nouiz.org>
parents:
496
diff
changeset
|
909 \newpage |
496
e41007dd40e9
make the reference shorter.
Frederic Bastien <nouiz@nouiz.org>
parents:
495
diff
changeset
|
910 { |
e41007dd40e9
make the reference shorter.
Frederic Bastien <nouiz@nouiz.org>
parents:
495
diff
changeset
|
911 \bibliography{strings,strings-short,strings-shorter,ift6266_ml,aigaion-shorter,specials} |
469 | 912 %\bibliographystyle{plainnat} |
913 \bibliographystyle{unsrtnat} | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
914 %\bibliographystyle{apalike} |
484
9a757d565e46
reduction de taille
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
483
diff
changeset
|
915 } |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
916 |
485
6beaf3328521
les tables enlevées
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
484
diff
changeset
|
917 |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
918 \end{document} |