Mercurial > ift6266
annotate baseline/mlp/mlp_nist.py @ 613:5e481b224117
fix the reading of PNIST dataset following Dumi compression of the data.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Thu, 06 Jan 2011 13:57:05 -0500 |
parents | 868f82777839 |
children |
rev | line source |
---|---|
110 | 1 """ |
2 This tutorial introduces the multilayer perceptron using Theano. | |
3 | |
4 A multilayer perceptron is a logistic regressor where | |
5 instead of feeding the input to the logistic regression you insert a | |
6 intermidiate layer, called the hidden layer, that has a nonlinear | |
7 activation function (usually tanh or sigmoid) . One can use many such | |
8 hidden layers making the architecture deep. The tutorial will also tackle | |
9 the problem of MNIST digit classification. | |
10 | |
11 .. math:: | |
12 | |
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
14 | |
15 References: | |
16 | |
17 - textbooks: "Pattern Recognition and Machine Learning" - | |
18 Christopher M. Bishop, section 5 | |
19 | |
20 TODO: recommended preprocessing, lr ranges, regularization ranges (explain | |
21 to do lr first, then add regularization) | |
22 | |
23 """ | |
24 __docformat__ = 'restructedtext en' | |
25 | |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
26 import sys |
110 | 27 import pdb |
28 import numpy | |
29 import pylab | |
30 import theano | |
31 import theano.tensor as T | |
32 import time | |
33 import theano.tensor.nnet | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
34 import pylearn |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
35 import theano,pylearn.version,ift6266 |
110 | 36 from pylearn.io import filetensor as ft |
322 | 37 from ift6266 import datasets |
110 | 38 |
39 data_path = '/data/lisa/data/nist/by_class/' | |
40 | |
41 class MLP(object): | |
42 """Multi-Layer Perceptron Class | |
43 | |
44 A multilayer perceptron is a feedforward artificial neural network model | |
45 that has one layer or more of hidden units and nonlinear activations. | |
46 Intermidiate layers usually have as activation function thanh or the | |
47 sigmoid function while the top layer is a softamx layer. | |
48 """ | |
49 | |
50 | |
51 | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
52 def __init__(self, input, n_in, n_hidden, n_out,learning_rate,detection_mode): |
110 | 53 """Initialize the parameters for the multilayer perceptron |
54 | |
55 :param input: symbolic variable that describes the input of the | |
56 architecture (one minibatch) | |
57 | |
58 :param n_in: number of input units, the dimension of the space in | |
59 which the datapoints lie | |
60 | |
61 :param n_hidden: number of hidden units | |
62 | |
63 :param n_out: number of output units, the dimension of the space in | |
64 which the labels lie | |
65 | |
66 """ | |
67 | |
68 # initialize the parameters theta = (W1,b1,W2,b2) ; note that this | |
69 # example contains only one hidden layer, but one can have as many | |
70 # layers as he/she wishes, making the network deeper. The only | |
71 # problem making the network deep this way is during learning, | |
72 # backpropagation being unable to move the network from the starting | |
73 # point towards; this is where pre-training helps, giving a good | |
74 # starting point for backpropagation, but more about this in the | |
75 # other tutorials | |
76 | |
77 # `W1` is initialized with `W1_values` which is uniformely sampled | |
78 # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) | |
79 # the output of uniform if converted using asarray to dtype | |
80 # theano.config.floatX so that the code is runable on GPU | |
81 W1_values = numpy.asarray( numpy.random.uniform( \ | |
82 low = -numpy.sqrt(6./(n_in+n_hidden)), \ | |
83 high = numpy.sqrt(6./(n_in+n_hidden)), \ | |
84 size = (n_in, n_hidden)), dtype = theano.config.floatX) | |
85 # `W2` is initialized with `W2_values` which is uniformely sampled | |
86 # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) | |
87 # the output of uniform if converted using asarray to dtype | |
88 # theano.config.floatX so that the code is runable on GPU | |
89 W2_values = numpy.asarray( numpy.random.uniform( | |
90 low = -numpy.sqrt(6./(n_hidden+n_out)), \ | |
91 high= numpy.sqrt(6./(n_hidden+n_out)),\ | |
92 size= (n_hidden, n_out)), dtype = theano.config.floatX) | |
93 | |
94 self.W1 = theano.shared( value = W1_values ) | |
95 self.b1 = theano.shared( value = numpy.zeros((n_hidden,), | |
96 dtype= theano.config.floatX)) | |
97 self.W2 = theano.shared( value = W2_values ) | |
98 self.b2 = theano.shared( value = numpy.zeros((n_out,), | |
99 dtype= theano.config.floatX)) | |
100 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
101 #include the learning rate in the classifer so |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
102 #we can modify it on the fly when we want |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
103 lr_value=learning_rate |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
104 self.lr=theano.shared(value=lr_value) |
110 | 105 # symbolic expression computing the values of the hidden layer |
106 self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
107 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
108 |
110 | 109 |
110 # symbolic expression computing the values of the top layer | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
111 if(detection_mode==0): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
112 self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
113 else: |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
114 self.p_y_given_x= T.nnet.sigmoid(T.dot(self.hidden, self.W2)+self.b2) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
115 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
116 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
117 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
118 # self.y_out_sig= T.sigmoid(T.dot(self.hidden, self.W2)+self.b2) |
110 | 119 |
120 # compute prediction as class whose probability is maximal in | |
121 # symbolic form | |
122 self.y_pred = T.argmax( self.p_y_given_x, axis =1) | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
123 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
124 # self.y_pred_sig = T.argmax( self.y_out_sig, axis =1) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
125 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
126 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
127 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
128 |
110 | 129 |
130 # L1 norm ; one regularization option is to enforce L1 norm to | |
131 # be small | |
132 self.L1 = abs(self.W1).sum() + abs(self.W2).sum() | |
133 | |
134 # square of L2 norm ; one regularization option is to enforce | |
135 # square of L2 norm to be small | |
136 self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() | |
137 | |
138 | |
139 | |
140 def negative_log_likelihood(self, y): | |
141 """Return the mean of the negative log-likelihood of the prediction | |
142 of this model under a given target distribution. | |
143 | |
144 .. math:: | |
145 | |
146 \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
147 \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
148 \ell (\theta=\{W,b\}, \mathcal{D}) | |
149 | |
150 | |
151 :param y: corresponds to a vector that gives for each example the | |
152 :correct label | |
153 """ | |
154 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
155 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
156 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
157 def cross_entropy(self, y): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
158 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]+T.sum(T.log(1-self.p_y_given_x), axis=1)-T.log(1-self.p_y_given_x)[T.arange(y.shape[0]),y]) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
159 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
160 |
110 | 161 |
162 | |
163 | |
164 | |
165 def errors(self, y): | |
166 """Return a float representing the number of errors in the minibatch | |
167 over the total number of examples of the minibatch | |
168 """ | |
169 | |
170 # check if y has same dimension of y_pred | |
171 if y.ndim != self.y_pred.ndim: | |
172 raise TypeError('y should have the same shape as self.y_pred', | |
173 ('y', target.type, 'y_pred', self.y_pred.type)) | |
174 # check if y is of the correct datatype | |
175 if y.dtype.startswith('int'): | |
176 # the T.neq operator returns a vector of 0s and 1s, where 1 | |
177 # represents a mistake in prediction | |
178 return T.mean(T.neq(self.y_pred, y)) | |
179 else: | |
180 raise NotImplementedError() | |
181 | |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
182 def mlp_get_nist_error(model_name='/u/mullerx/ift6266h10_sandbox_db/xvm_final_lr1_p073/8/best_model.npy.npz', |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
183 data_set=0): |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
184 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
185 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
186 |
404 | 187 |
188 | |
189 | |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
190 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
191 # load the data set and create an mlp based on the dimensions of the model |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
192 model=numpy.load(model_name) |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
193 W1=model['W1'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
194 W2=model['W2'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
195 b1=model['b1'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
196 b2=model['b2'] |
404 | 197 |
198 total_error_count=0.0 | |
199 total_exemple_count=0.0 | |
200 | |
201 nb_error_count=0.0 | |
202 nb_exemple_count=0.0 | |
203 | |
204 char_error_count=0.0 | |
205 char_exemple_count=0.0 | |
206 | |
207 min_error_count=0.0 | |
208 min_exemple_count=0.0 | |
209 | |
210 maj_error_count=0.0 | |
211 maj_exemple_count=0.0 | |
212 | |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
213 vtotal_error_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
214 vtotal_exemple_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
215 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
216 vnb_error_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
217 vnb_exemple_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
218 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
219 vchar_error_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
220 vchar_exemple_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
221 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
222 vmin_error_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
223 vmin_exemple_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
224 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
225 vmaj_error_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
226 vmaj_exemple_count=0.0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
227 |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
228 nbc_error_count=0.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
229 vnbc_error_count=0.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
230 |
404 | 231 |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
232 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
233 if data_set==0: |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
234 print 'using nist' |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
235 dataset=datasets.nist_all() |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
236 elif data_set==1: |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
237 print 'using p07' |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
238 dataset=datasets.nist_P07() |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
239 elif data_set==2: |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
240 print 'using pnist' |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
241 dataset=datasets.PNIST07() |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
242 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
243 |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
244 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
245 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
246 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
247 #get the test error |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
248 #use a batch size of 1 so we can get the sub-class error |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
249 #without messing with matrices (will be upgraded later) |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
250 test_score=0 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
251 temp=0 |
404 | 252 for xt,yt in dataset.test(1): |
253 | |
254 total_exemple_count = total_exemple_count +1 | |
255 #get activation for layer 1 | |
256 a0=numpy.dot(numpy.transpose(W1),numpy.transpose(xt[0])) + b1 | |
257 #add non linear function to layer 1 activation | |
258 a0_out=numpy.tanh(a0) | |
259 | |
260 #get activation for output layer | |
261 a1= numpy.dot(numpy.transpose(W2),a0_out) + b2 | |
262 #add non linear function for output activation (softmax) | |
263 a1_exp = numpy.exp(a1) | |
264 sum_a1=numpy.sum(a1_exp) | |
265 a1_out=a1_exp/sum_a1 | |
266 | |
267 predicted_class=numpy.argmax(a1_out) | |
268 wanted_class=yt[0] | |
269 if(predicted_class!=wanted_class): | |
270 total_error_count = total_error_count +1 | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
271 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
272 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
273 if(not(predicted_class==wanted_class or ( (((predicted_class+26)==wanted_class) or ((predicted_class-26)==wanted_class)) and wanted_class>9) )): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
274 nbc_error_count = nbc_error_count +1 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
275 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
276 |
404 | 277 #treat digit error |
278 if(wanted_class<10): | |
279 nb_exemple_count=nb_exemple_count + 1 | |
280 predicted_class=numpy.argmax(a1_out[0:10]) | |
281 if(predicted_class!=wanted_class): | |
282 nb_error_count = nb_error_count +1 | |
283 | |
284 if(wanted_class>9): | |
285 char_exemple_count=char_exemple_count + 1 | |
286 predicted_class=numpy.argmax(a1_out[10:62])+10 | |
287 if((predicted_class!=wanted_class) and ((predicted_class+26)!=wanted_class) and ((predicted_class-26)!=wanted_class)): | |
288 char_error_count = char_error_count +1 | |
405 | 289 |
290 #minuscule | |
291 if(wanted_class>9 and wanted_class<36): | |
292 maj_exemple_count=maj_exemple_count + 1 | |
293 predicted_class=numpy.argmax(a1_out[10:35])+10 | |
294 if(predicted_class!=wanted_class): | |
295 maj_error_count = maj_error_count +1 | |
296 #majuscule | |
297 if(wanted_class>35): | |
298 min_exemple_count=min_exemple_count + 1 | |
299 predicted_class=numpy.argmax(a1_out[36:62])+36 | |
300 if(predicted_class!=wanted_class): | |
301 min_error_count = min_error_count +1 | |
404 | 302 |
303 | |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
304 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
305 vtest_score=0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
306 vtemp=0 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
307 for xt,yt in dataset.valid(1): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
308 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
309 vtotal_exemple_count = vtotal_exemple_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
310 #get activation for layer 1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
311 a0=numpy.dot(numpy.transpose(W1),numpy.transpose(xt[0])) + b1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
312 #add non linear function to layer 1 activation |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
313 a0_out=numpy.tanh(a0) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
314 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
315 #get activation for output layer |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
316 a1= numpy.dot(numpy.transpose(W2),a0_out) + b2 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
317 #add non linear function for output activation (softmax) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
318 a1_exp = numpy.exp(a1) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
319 sum_a1=numpy.sum(a1_exp) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
320 a1_out=a1_exp/sum_a1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
321 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
322 predicted_class=numpy.argmax(a1_out) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
323 wanted_class=yt[0] |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
324 if(predicted_class!=wanted_class): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
325 vtotal_error_count = vtotal_error_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
326 |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
327 if(not(predicted_class==wanted_class or ( (((predicted_class+26)==wanted_class) or ((predicted_class-26)==wanted_class)) and wanted_class>9) )): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
328 vnbc_error_count = nbc_error_count +1 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
329 |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
330 #treat digit error |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
331 if(wanted_class<10): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
332 vnb_exemple_count=vnb_exemple_count + 1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
333 predicted_class=numpy.argmax(a1_out[0:10]) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
334 if(predicted_class!=wanted_class): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
335 vnb_error_count = vnb_error_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
336 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
337 if(wanted_class>9): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
338 vchar_exemple_count=vchar_exemple_count + 1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
339 predicted_class=numpy.argmax(a1_out[10:62])+10 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
340 if((predicted_class!=wanted_class) and ((predicted_class+26)!=wanted_class) and ((predicted_class-26)!=wanted_class)): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
341 vchar_error_count = vchar_error_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
342 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
343 #minuscule |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
344 if(wanted_class>9 and wanted_class<36): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
345 vmaj_exemple_count=vmaj_exemple_count + 1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
346 predicted_class=numpy.argmax(a1_out[10:35])+10 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
347 if(predicted_class!=wanted_class): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
348 vmaj_error_count = vmaj_error_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
349 #majuscule |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
350 if(wanted_class>35): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
351 vmin_exemple_count=vmin_exemple_count + 1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
352 predicted_class=numpy.argmax(a1_out[36:62])+36 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
353 if(predicted_class!=wanted_class): |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
354 vmin_error_count = vmin_error_count +1 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
355 |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
356 |
404 | 357 print (('total error = %f') % ((total_error_count/total_exemple_count)*100.0)) |
358 print (('number error = %f') % ((nb_error_count/nb_exemple_count)*100.0)) | |
359 print (('char error = %f') % ((char_error_count/char_exemple_count)*100.0)) | |
405 | 360 print (('min error = %f') % ((min_error_count/min_exemple_count)*100.0)) |
361 print (('maj error = %f') % ((maj_error_count/maj_exemple_count)*100.0)) | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
362 print (('36 error = %f') % ((nbc_error_count/total_exemple_count)*100.0)) |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
363 |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
364 print (('valid total error = %f') % ((vtotal_error_count/vtotal_exemple_count)*100.0)) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
365 print (('valid number error = %f') % ((vnb_error_count/vnb_exemple_count)*100.0)) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
366 print (('valid char error = %f') % ((vchar_error_count/vchar_exemple_count)*100.0)) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
367 print (('valid min error = %f') % ((vmin_error_count/vmin_exemple_count)*100.0)) |
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
368 print (('valid maj error = %f') % ((vmaj_error_count/vmaj_exemple_count)*100.0)) |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
369 print (('valid 36 error = %f') % ((vnbc_error_count/vtotal_exemple_count)*100.0)) |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
370 |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
371 print (('num total = %d,%d') % (total_exemple_count,total_error_count)) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
372 print (('num nb = %d,%d') % (nb_exemple_count,nb_error_count)) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
373 print (('num min = %d,%d') % (min_exemple_count,min_error_count)) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
374 print (('num maj = %d,%d') % (maj_exemple_count,maj_error_count)) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
375 print (('num char = %d,%d') % (char_exemple_count,char_error_count)) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
376 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
377 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
378 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
379 total_error_count/=total_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
380 nb_error_count/=nb_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
381 char_error_count/=char_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
382 min_error_count/=min_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
383 maj_error_count/=maj_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
384 nbc_error_count/=total_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
385 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
386 vtotal_error_count/=vtotal_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
387 vnb_error_count/=vnb_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
388 vchar_error_count/=vchar_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
389 vmin_error_count/=vmin_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
390 vmaj_error_count/=vmaj_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
391 vnbc_error_count/=vtotal_exemple_count |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
392 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
393 |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
394 |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
395 return (total_error_count,nb_error_count,char_error_count,min_error_count,maj_error_count,nbc_error_count,\ |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
396 vtotal_error_count,vnb_error_count,vchar_error_count,vmin_error_count,vmaj_error_count,vnbc_error_count) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
397 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
398 def jobman_get_error(state,channel): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
399 (all_t_error,nb_t_error,char_t_error,min_t_error,maj_t_error,nbc_t_error, |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
400 all_v_error,nb_v_error,char_v_error,min_v_error,maj_v_error,nbc_v_error)=mlp_get_nist_error(data_set=state.data_set,\ |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
401 model_name=state.model_name) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
402 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
403 state.all_t_error=all_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
404 state.nb_t_error=nb_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
405 state.char_t_error=char_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
406 state.min_t_error=min_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
407 state.maj_t_error=maj_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
408 state.nbc_t_error=nbc_t_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
409 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
410 state.all_v_error=all_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
411 state.nb_v_error=nb_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
412 state.char_v_error=char_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
413 state.min_v_error=min_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
414 state.maj_v_error=maj_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
415 state.nbc_v_error=nbc_v_error*100.0 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
416 |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
417 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
418 return channel.COMPLETE |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
419 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
420 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
421 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
422 |
110 | 423 |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
424 def mlp_full_nist( verbose = 1,\ |
145
8ceaaf812891
changed adaptive lr flag from bool to int for jobman issues
XavierMuller
parents:
143
diff
changeset
|
425 adaptive_lr = 0,\ |
322 | 426 data_set=0,\ |
110 | 427 learning_rate=0.01,\ |
428 L1_reg = 0.00,\ | |
429 L2_reg = 0.0001,\ | |
430 nb_max_exemples=1000000,\ | |
431 batch_size=20,\ | |
322 | 432 nb_hidden = 30,\ |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
433 nb_targets = 62, |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
434 tau=1e6,\ |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
435 lr_t2_factor=0.5,\ |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
436 init_model=0,\ |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
437 channel=0,\ |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
438 detection_mode=0): |
110 | 439 |
440 | |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
441 if channel!=0: |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
442 channel.save() |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
443 configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
444 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
445 #save initial learning rate if classical adaptive lr is used |
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
446 initial_lr=learning_rate |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
447 max_div_count=1000 |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
448 optimal_test_error=0 |
323 | 449 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
450 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
451 total_validation_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
452 total_train_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
453 learning_rate_list=[] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
454 best_training_error=float('inf'); |
323 | 455 divergence_flag_list=[] |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
456 |
322 | 457 if data_set==0: |
378 | 458 print 'using nist' |
322 | 459 dataset=datasets.nist_all() |
323 | 460 elif data_set==1: |
378 | 461 print 'using p07' |
323 | 462 dataset=datasets.nist_P07() |
349
22efb4968054
added pnist support, will check in code for data set iterator later
xaviermuller
parents:
338
diff
changeset
|
463 elif data_set==2: |
378 | 464 print 'using pnist' |
349
22efb4968054
added pnist support, will check in code for data set iterator later
xaviermuller
parents:
338
diff
changeset
|
465 dataset=datasets.PNIST07() |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
466 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
467 |
110 | 468 |
469 | |
470 ishape = (32,32) # this is the size of NIST images | |
471 | |
472 # allocate symbolic variables for the data | |
473 x = T.fmatrix() # the data is presented as rasterized images | |
474 y = T.lvector() # the labels are presented as 1D vector of | |
475 # [long int] labels | |
476 | |
322 | 477 |
110 | 478 # construct the logistic regression class |
322 | 479 classifier = MLP( input=x,\ |
110 | 480 n_in=32*32,\ |
481 n_hidden=nb_hidden,\ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
482 n_out=nb_targets, |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
483 learning_rate=learning_rate, |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
484 detection_mode=detection_mode) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
485 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
486 |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
487 # check if we want to initialise the weights with a previously calculated model |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
488 # dimensions must be consistent between old model and current configuration!!!!!! (nb_hidden and nb_targets) |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
489 if init_model!=0: |
378 | 490 print 'using old model' |
491 print init_model | |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
492 old_model=numpy.load(init_model) |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
493 classifier.W1.value=old_model['W1'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
494 classifier.W2.value=old_model['W2'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
495 classifier.b1.value=old_model['b1'] |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
496 classifier.b2.value=old_model['b2'] |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
497 |
110 | 498 |
499 # the cost we minimize during training is the negative log likelihood of | |
500 # the model plus the regularization terms (L1 and L2); cost is expressed | |
501 # here symbolically | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
502 if(detection_mode==0): |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
503 cost = classifier.negative_log_likelihood(y) \ |
110 | 504 + L1_reg * classifier.L1 \ |
505 + L2_reg * classifier.L2_sqr | |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
506 else: |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
507 cost = classifier.cross_entropy(y) \ |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
508 + L1_reg * classifier.L1 \ |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
509 + L2_reg * classifier.L2_sqr |
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
510 |
110 | 511 |
512 # compiling a theano function that computes the mistakes that are made by | |
513 # the model on a minibatch | |
514 test_model = theano.function([x,y], classifier.errors(y)) | |
515 | |
516 # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) | |
517 g_W1 = T.grad(cost, classifier.W1) | |
518 g_b1 = T.grad(cost, classifier.b1) | |
519 g_W2 = T.grad(cost, classifier.W2) | |
520 g_b2 = T.grad(cost, classifier.b2) | |
521 | |
522 # specify how to update the parameters of the model as a dictionary | |
523 updates = \ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
524 { classifier.W1: classifier.W1 - classifier.lr*g_W1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
525 , classifier.b1: classifier.b1 - classifier.lr*g_b1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
526 , classifier.W2: classifier.W2 - classifier.lr*g_W2 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
527 , classifier.b2: classifier.b2 - classifier.lr*g_b2 } |
110 | 528 |
529 # compiling a theano function `train_model` that returns the cost, but in | |
530 # the same time updates the parameter of the model based on the rules | |
531 # defined in `updates` | |
532 train_model = theano.function([x, y], cost, updates = updates ) | |
322 | 533 |
534 | |
535 | |
110 | 536 |
537 | |
538 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
539 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
540 |
110 | 541 |
542 #conditions for stopping the adaptation: | |
323 | 543 #1) we have reached nb_max_exemples (this is rounded up to be a multiple of the train size so we always do at least 1 epoch) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
544 #2) validation error is going up twice in a row(probable overfitting) |
110 | 545 |
546 # This means we no longer stop on slow convergence as low learning rates stopped | |
323 | 547 # too fast but instead we will wait for the valid error going up 3 times in a row |
548 # We save the curb of the validation error so we can always go back to check on it | |
549 # and we save the absolute best model anyway, so we might as well explore | |
550 # a bit when diverging | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
551 |
323 | 552 #approximate number of samples in the nist training set |
322 | 553 #this is just to have a validation frequency |
323 | 554 #roughly proportionnal to the original nist training set |
322 | 555 n_minibatches = 650000/batch_size |
556 | |
557 | |
323 | 558 patience =2*nb_max_exemples/batch_size #in units of minibatch |
110 | 559 validation_frequency = n_minibatches/4 |
560 | |
561 | |
562 | |
563 | |
322 | 564 |
110 | 565 best_validation_loss = float('inf') |
566 best_iter = 0 | |
567 test_score = 0. | |
568 start_time = time.clock() | |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
569 time_n=0 #in unit of exemples |
322 | 570 minibatch_index=0 |
571 epoch=0 | |
572 temp=0 | |
323 | 573 divergence_flag=0 |
322 | 574 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
575 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
576 |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
577 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
578 print 'starting training' |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
579 sys.stdout.flush() |
322 | 580 while(minibatch_index*batch_size<nb_max_exemples): |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
581 |
322 | 582 for x, y in dataset.train(batch_size): |
110 | 583 |
323 | 584 #if we are using the classic learning rate deacay, adjust it before training of current mini-batch |
322 | 585 if adaptive_lr==2: |
586 classifier.lr.value = tau*initial_lr/(tau+time_n) | |
587 | |
588 | |
589 #train model | |
590 cost_ij = train_model(x,y) | |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
591 if (minibatch_index) % validation_frequency == 0: |
322 | 592 #save the current learning rate |
593 learning_rate_list.append(classifier.lr.value) | |
323 | 594 divergence_flag_list.append(divergence_flag) |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
595 |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
596 |
322 | 597 |
598 # compute the validation error | |
599 this_validation_loss = 0. | |
600 temp=0 | |
601 for xv,yv in dataset.valid(1): | |
602 # sum up the errors for each minibatch | |
323 | 603 this_validation_loss += test_model(xv,yv) |
322 | 604 temp=temp+1 |
605 # get the average by dividing with the number of minibatches | |
606 this_validation_loss /= temp | |
607 #save the validation loss | |
608 total_validation_error_list.append(this_validation_loss) | |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
609 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
610 print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
611 (epoch, minibatch_index+1,classifier.lr.value, |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
612 this_validation_loss*100.)) |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
613 sys.stdout.flush() |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
614 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
615 #save temp results to check during training |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
616 numpy.savez('temp_results.npy',config=configuration,total_validation_error_list=total_validation_error_list,\ |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
617 learning_rate_list=learning_rate_list, divergence_flag_list=divergence_flag_list) |
322 | 618 |
619 # if we got the best validation score until now | |
620 if this_validation_loss < best_validation_loss: | |
621 # save best validation score and iteration number | |
622 best_validation_loss = this_validation_loss | |
623 best_iter = minibatch_index | |
323 | 624 #reset divergence flag |
625 divergence_flag=0 | |
626 | |
627 #save the best model. Overwrite the current saved best model so | |
628 #we only keep the best | |
629 numpy.savez('best_model.npy', config=configuration, W1=classifier.W1.value, W2=classifier.W2.value, b1=classifier.b1.value,\ | |
630 b2=classifier.b2.value, minibatch_index=minibatch_index) | |
631 | |
322 | 632 # test it on the test set |
633 test_score = 0. | |
634 temp =0 | |
635 for xt,yt in dataset.test(batch_size): | |
636 test_score += test_model(xt,yt) | |
637 temp = temp+1 | |
638 test_score /= temp | |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
639 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
640 print(('epoch %i, minibatch %i, test error of best ' |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
641 'model %f %%') % |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
642 (epoch, minibatch_index+1, |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
643 test_score*100.)) |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
644 sys.stdout.flush() |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
645 optimal_test_error=test_score |
322 | 646 |
647 # if the validation error is going up, we are overfitting (or oscillating) | |
323 | 648 # check if we are allowed to continue and if we will adjust the learning rate |
322 | 649 elif this_validation_loss >= best_validation_loss: |
323 | 650 |
651 | |
652 # In non-classic learning rate decay, we modify the weight only when | |
653 # validation error is going up | |
654 if adaptive_lr==1: | |
655 classifier.lr.value=classifier.lr.value*lr_t2_factor | |
656 | |
657 | |
658 #cap the patience so we are allowed to diverge max_div_count times | |
659 #if we are going up max_div_count in a row, we will stop immediatelty by modifying the patience | |
660 divergence_flag = divergence_flag +1 | |
661 | |
662 | |
322 | 663 #calculate the test error at this point and exit |
664 # test it on the test set | |
665 test_score = 0. | |
666 temp=0 | |
667 for xt,yt in dataset.test(batch_size): | |
668 test_score += test_model(xt,yt) | |
669 temp=temp+1 | |
670 test_score /= temp | |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
671 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
672 print ' validation error is going up, possibly stopping soon' |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
673 print((' epoch %i, minibatch %i, test error of best ' |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
674 'model %f %%') % |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
675 (epoch, minibatch_index+1, |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
676 test_score*100.)) |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
677 sys.stdout.flush() |
322 | 678 |
679 | |
680 | |
323 | 681 # check early stop condition |
682 if divergence_flag==max_div_count: | |
683 minibatch_index=nb_max_exemples | |
684 print 'we have diverged, early stopping kicks in' | |
685 break | |
686 | |
687 #check if we have seen enough exemples | |
688 #force one epoch at least | |
689 if epoch>0 and minibatch_index*batch_size>nb_max_exemples: | |
322 | 690 break |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
691 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
692 |
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
693 |
322 | 694 |
695 | |
696 time_n= time_n + batch_size | |
323 | 697 minibatch_index = minibatch_index + 1 |
698 | |
699 # we have finished looping through the training set | |
322 | 700 epoch = epoch+1 |
110 | 701 end_time = time.clock() |
355
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
702 |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
703 print(('Optimization complete. Best validation score of %f %% ' |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
704 'obtained at iteration %i, with test performance %f %%') % |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
705 (best_validation_loss * 100., best_iter, test_score*100.)) |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
706 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
707 print minibatch_index |
76b7182dd32e
added support for pnist in iterator. corrected a print bug in mlp
xaviermuller
parents:
349
diff
changeset
|
708 sys.stdout.flush() |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
709 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
710 #save the model and the weights |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
711 numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
712 numpy.savez('results.npy',config=configuration,total_train_error_list=total_train_error_list,total_validation_error_list=total_validation_error_list,\ |
323 | 713 learning_rate_list=learning_rate_list, divergence_flag_list=divergence_flag_list) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
714 |
414
3dba84c0fbc1
saving test score from best validation score in db now
xaviermuller
parents:
405
diff
changeset
|
715 return (best_training_error*100.0,best_validation_loss * 100.,optimal_test_error*100.,best_iter*batch_size,(end_time-start_time)/60) |
110 | 716 |
717 | |
718 if __name__ == '__main__': | |
719 mlp_full_mnist() | |
720 | |
721 def jobman_mlp_full_nist(state,channel): | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
722 (train_error,validation_error,test_error,nb_exemples,time)=mlp_full_nist(learning_rate=state.learning_rate,\ |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
723 nb_max_exemples=state.nb_max_exemples,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
724 nb_hidden=state.nb_hidden,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
725 adaptive_lr=state.adaptive_lr,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
726 tau=state.tau,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
727 verbose = state.verbose,\ |
324 | 728 lr_t2_factor=state.lr_t2_factor, |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
729 data_set=state.data_set, |
378 | 730 init_model=state.init_model, |
445
868f82777839
added jobman all test + val error and sigmoid output
xaviermuller
parents:
414
diff
changeset
|
731 detection_mode = state.detection_mode,\ |
338
fca22114bb23
added async save, restart from old model and independant error calculation based on Arnaud's iterator
xaviermuller
parents:
324
diff
changeset
|
732 channel=channel) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
733 state.train_error=train_error |
110 | 734 state.validation_error=validation_error |
735 state.test_error=test_error | |
736 state.nb_exemples=nb_exemples | |
737 state.time=time | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
738 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) |
110 | 739 return channel.COMPLETE |
740 | |
741 |