view engine/core/util/math/fife_math.h @ 697:ecaa4d98f05f tip

Abstracted the GUI code and refactored the GUIChan-specific code into its own module. * Most of the GUIChan code has been refactored into its own gui/guichan module. However, references to the GuiFont class still persist in the Engine and GuiManager code and these will need further refactoring. * GuiManager is now an abstract base class which specific implementations (e.g. GUIChan) should subclass. * The GUIChan GUI code is now a concrete implementation of GuiManager, most of which is in the new GuiChanGuiManager class. * The GUI code in the Console class has been refactored out of the Console and into the GUIChan module as its own GuiChanConsoleWidget class. The rest of the Console class related to executing commands was left largely unchanged. * Existing client code may need to downcast the GuiManager pointer received from FIFE::Engine::getGuiManager() to GuiChanGuiManager, since not all functionality is represented in the GuiManager abstract base class. Python client code can use the new GuiChanGuiManager.castTo static method for this purpose.
author M. George Hansen <technopolitica@gmail.com>
date Sat, 18 Jun 2011 00:28:40 -1000
parents 07b1cf8e92b5
children
line wrap: on
line source

/***************************************************************************
 *   Copyright (C) 2005-2010 by the FIFE team                              *
 *   http://www.fifengine.net                                               *
 *   This file is part of FIFE.                                            *
 *                                                                         *
 *   FIFE is free software; you can redistribute it and/or                 *
 *   modify it under the terms of the GNU Lesser General Public            *
 *   License as published by the Free Software Foundation; either          *
 *   version 2.1 of the License, or (at your option) any later version.    *
 *                                                                         *
 *   This library is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *   Lesser General Public License for more details.                       *
 *                                                                         *
 *   You should have received a copy of the GNU Lesser General Public      *
 *   License along with this library; if not, write to the                 *
 *   Free Software Foundation, Inc.,                                       *
 *   51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA          *
 ***************************************************************************/

#ifndef FIFE_UTIL_FIFE_MATH_H
#define FIFE_UTIL_FIFE_MATH_H

// Standard C++ library includes
#include <cassert>
#include <cmath>
#include <limits>

// Platform specific includes

// 3rd party library includes

// FIFE includes
// These includes are split up in two parts, separated by one empty line
// First block: files included from the FIFE root src directory
// Second block: files included from the same folder

#ifndef ABS
#define ABS(x) ((x)<0?-(x):(x))

#endif

// Sort out the missing round function in MSVC:
#if defined( WIN32 ) && defined( _MSC_VER )
inline double round(const double x) {
	return x < 0.0 ? ceil(x - 0.5) : floor(x + 0.5);
}
#endif

namespace FIFE {

	static const float FLT_STD_EPSILON = std::numeric_limits<float>::epsilon();
	static const float FLT_STD_MAX = std::numeric_limits<float>::max();
	static const float FLT_ZERO_TOLERANCE = 1e-06f;
	static const float FLT_PI = 4.0f*std::atan(1.0f);
	static const float FLT_TWO_PI = 2.0f*FLT_PI;
	static const float FLT_HALF_PI = 0.5f*FLT_PI;
	static const float FLT_INVERSE_PI = 1.0f/FLT_PI;
	static const float FLT_INVERSE_TWO_PI = 1.0f/FLT_TWO_PI;
	static const float FLT_DEG_TO_RAD = FLT_PI/180.0f;
	static const float FLT_RAD_TO_DEG = 180.0f/FLT_PI;
	static const float FLT_LOG_2 = std::log(2.0f);
	static const float FLT_LOG_10 = std::log(10.0f);
	static const float FLT_INV_LOG_2 = 1.0f/std::log(2.0f);
	static const float FLT_INV_LOG_10 = 1.0f/std::log(10.0f);

	static const double DBL_STD_EPSILON = std::numeric_limits<double>::epsilon();
	static const double DBL_STD_MAX = std::numeric_limits<double>::max();
	static const double DBL_ZERO_TOLERANCE = 1e-08;
	static const double DBL_PI = 4.0*std::atan(1.0);
	static const double DBL_TWO_PI = 2.0*DBL_PI;
	static const double DBL_HALF_PI = 0.5*DBL_PI;
	static const double DBL_INVERSE_PI = 1.0/DBL_PI;
	static const double DBL_INVERSE_TWO_PI = 1.0/DBL_TWO_PI;
	static const double DBL_DEG_TO_RAD = DBL_PI/180.0;
	static const double DBL_RAD_TO_DEG = 180.0f/DBL_PI;
	static const double DBL_LOG_2 = std::log(2.0);
	static const double DBL_LOG_10 = std::log(10.0);
	static const double DBL_INV_LOG_2 = 1.0/std::log(2.0);
	static const double DBL_INV_LOG_10 = 1.0/std::log(10.0);

	template <class numT>
	struct float_traits { };

	template <>
	struct float_traits<float> {
		typedef float float_type;
		static inline float_type epsilon() { return FLT_STD_EPSILON; }
		static inline float_type zeroTolerance() { return FLT_ZERO_TOLERANCE; }
		static inline float_type max() { return FLT_STD_MAX; }
		static inline float_type pi() { return FLT_PI; }
		static inline float_type twoPi() { return FLT_TWO_PI; }
		static inline float_type halfPi() { return FLT_HALF_PI; }
		static inline float_type inversePi() { return FLT_INVERSE_PI; }
		static inline float_type inverseTwoPi() { return FLT_INVERSE_TWO_PI; }
		static inline float_type degToRad() { return FLT_DEG_TO_RAD; }
		static inline float_type radToDeg() { return FLT_RAD_TO_DEG; }
		static inline float_type log2() { return FLT_LOG_2; }
		static inline float_type log10() { return FLT_LOG_10; }
		static inline float_type invLog2() { return FLT_INV_LOG_2; }
		static inline float_type invLog10() { return FLT_INV_LOG_10; }
	};

	template <>
	struct float_traits<double> {
		typedef double float_type;
		static inline float_type epsilon() { return DBL_STD_EPSILON; }
		static inline float_type zeroTolerance() { return DBL_ZERO_TOLERANCE; }
		static inline float_type max() { return DBL_STD_MAX; }
		static inline float_type pi() { return DBL_PI; }
		static inline float_type twoPi() { return DBL_TWO_PI; }
		static inline float_type halfPi() { return DBL_HALF_PI; }
		static inline float_type inversePi() { return DBL_INVERSE_PI; }
		static inline float_type inverseTwoPi() { return DBL_INVERSE_TWO_PI; }
		static inline float_type degToRad() { return DBL_DEG_TO_RAD; }
		static inline float_type radToDeg() { return DBL_RAD_TO_DEG; }
		static inline float_type log2() { return DBL_LOG_2; }
		static inline float_type log10() { return DBL_LOG_10; }
		static inline float_type invLog2() { return DBL_INV_LOG_2; }
		static inline float_type invLog10() { return DBL_INV_LOG_10; }
	};

	template <typename T>
	class Math {
	public:
		typedef T num_type;
		typedef float_traits<num_type> traits_type;

		static inline num_type epsilon() { return traits_type::epsilon(); }
		static inline num_type zeroTolerance() { return traits_type::zeroTolerance(); }
		static inline num_type max() { return traits_type::max(); }
		static inline num_type pi() { return traits_type::pi(); }
		static inline num_type twoPi() { return traits_type::twoPi(); }
		static inline num_type halfPi() { return traits_type::halfPi(); }
		static inline num_type inversePi() { return traits_type::inversePi(); }
		static inline num_type inverseTwoPi() { return traits_type::inverseTwoPi(); }
		static inline num_type degToRad() { return traits_type::degToRad(); }
		static inline num_type radToDeg() { return traits_type::radToDeg(); }
		static inline num_type log2() { return traits_type::log2(); }
		static inline num_type log10() { return traits_type::log10(); }
		static inline num_type invLog2() { return traits_type::invLog2(); }
		static inline num_type invLog10() { return traits_type::invLog10(); }

		static T ACos(T _val);
		static T ASin(T _val);
		static T ATan(T _val);
		static T ATan2(T _x, T _y);
		static T Ceil(T _val);
		static T Cos(T _val);
		static T Exp(T _val);
		static T FAbs(T _val);
		static T Floor(T _val);
		static T FMod (T _x, T _y);
		static T InvSqrt(T _val);
		static T Log(T _val);
		static T Log2(T _val);
		static T Log10(T _val);
		static T Pow(T _base, T _exponent);
		static T Sin(T _val);
		static T Sqr(T _val);
		static T Sqrt(T _val);
		static T Tan(T _val);
	};

	typedef Math<float> Mathf;
	typedef Math<double> Mathd;

	template<typename T>
	inline T Math<T>::ACos(T _val) {
		if (-static_cast<T>(1) < _val) {
			if (_val < static_cast<T>(1)) {
				return static_cast<T>(std::acos(_val));
			}
			else {
				return static_cast<T>(0);
			}
		}
		else {
			return pi();
		}
	}

	template <class T>
	inline T Math<T>::ASin(T _val) {
		if (-static_cast<T>(1) < _val) {
			if (_val < static_cast<T>(1)) {
				return static_cast<T>(std::asin(_val));
			}
			else {
				return halfPi();
			}
		}
		else {
			return -halfPi();
		}
	}

	template <class T>
	inline T Math<T>::ATan(T _val) {
		return static_cast<T>(std::atan(_val));
	}

	template <class T>
	inline T Math<T>::ATan2(T _x, T _y) {
		return static_cast<T>(std::atan2(_x, _y));
	}

	template <class T>
	inline T Math<T>::Ceil(T _val) {
		return static_cast<T>(std::ceil(_val));
	}

	template <class T>
	inline T Math<T>::Cos(T _val) {
		return static_cast<T>(std::cos(_val));
	}

	template <class T>
	inline T Math<T>::Exp(T _val){
		return static_cast<T>(std::exp(_val));
	}

	template <class T>
	inline T Math<T>::FAbs(T _val) {
		return static_cast<T>(std::fabs(_val));
	}

	template <class T>
	inline T Math<T>::Floor(T _val) {
		return static_cast<T>(std::floor(_val));
	}

	template <class T>
	inline T Math<T>::FMod(T _x, T _y) {
		return static_cast<T>(std::fmod(_x, _y));
	}

	template <class T>
	inline T Math<T>::InvSqrt(T _val) {
		return static_cast<T>(1/std::sqrt(_val));
	}

	template <class T>
	inline T Math<T>::Log(T _val) {
		return static_cast<T>(std::log(_val));
	}

	template <class T>
	inline T Math<T>::Log2(T _val) {
		return invLog2() * static_cast<T>(std::log(_val));
	}
	template <class T>
	inline T Math<T>::Log10(T _val) {

		return invLog10() * static_cast<T>(std::log(_val));
	}

	template <class T>
	inline T Math<T>::Pow(T _base, T _exponent) {
		return static_cast<T>(std::pow(_base, _exponent));
	}

	template <class T>
	inline T Math<T>::Sin(T _val) {
		return static_cast<T>(std::sin(_val));
	}

	template <class T>
	inline T Math<T>::Sqr(T _val) {
		return _val*_val;
	}

	template <class T>
	inline T Math<T>::Sqrt(T _val) {
		return static_cast<T>(std::sqrt(_val));
	}

	template <class T>
	inline T Math<T>::Tan(T _val) {
		return static_cast<T>(std::tan(_val));
	}

	/** Returns the next higher power of 2 based on the passed argument
	 */
	inline unsigned nextPow2(unsigned x)
	{
		--x;
		x |= x >> 1;
		x |= x >> 2;
		x |= x >> 4;
		x |= x >> 8;
		x |= x >> 16;
		return ++x;
	}
} //FIFE

#endif // FIFE_UTIL_FIFE_MATH_H