Mercurial > fife-parpg
view engine/core/util/math/fife_math.h @ 654:5d6b1820b953
* Added the ability to change screen modes on the fly. This works both in OpenGL and SDL modes.
* Added IEngineChangeListener so the client can update the cameras viewport if the screen mode has been changed. I chose to do it this way because the engine has no way to know which camera it should update. It will be up to the client to do it.
* The cursor surface is now correctly freed when exiting.
* Added DeviceCaps::getNearestScreenMode() for the client to request a supported screen mode.
closes[t:315]
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Thu, 21 Oct 2010 18:50:50 +0000 |
parents | 07b1cf8e92b5 |
children |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2010 by the FIFE team * * http://www.fifengine.net * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ #ifndef FIFE_UTIL_FIFE_MATH_H #define FIFE_UTIL_FIFE_MATH_H // Standard C++ library includes #include <cassert> #include <cmath> #include <limits> // Platform specific includes // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #ifndef ABS #define ABS(x) ((x)<0?-(x):(x)) #endif // Sort out the missing round function in MSVC: #if defined( WIN32 ) && defined( _MSC_VER ) inline double round(const double x) { return x < 0.0 ? ceil(x - 0.5) : floor(x + 0.5); } #endif namespace FIFE { static const float FLT_STD_EPSILON = std::numeric_limits<float>::epsilon(); static const float FLT_STD_MAX = std::numeric_limits<float>::max(); static const float FLT_ZERO_TOLERANCE = 1e-06f; static const float FLT_PI = 4.0f*std::atan(1.0f); static const float FLT_TWO_PI = 2.0f*FLT_PI; static const float FLT_HALF_PI = 0.5f*FLT_PI; static const float FLT_INVERSE_PI = 1.0f/FLT_PI; static const float FLT_INVERSE_TWO_PI = 1.0f/FLT_TWO_PI; static const float FLT_DEG_TO_RAD = FLT_PI/180.0f; static const float FLT_RAD_TO_DEG = 180.0f/FLT_PI; static const float FLT_LOG_2 = std::log(2.0f); static const float FLT_LOG_10 = std::log(10.0f); static const float FLT_INV_LOG_2 = 1.0f/std::log(2.0f); static const float FLT_INV_LOG_10 = 1.0f/std::log(10.0f); static const double DBL_STD_EPSILON = std::numeric_limits<double>::epsilon(); static const double DBL_STD_MAX = std::numeric_limits<double>::max(); static const double DBL_ZERO_TOLERANCE = 1e-08; static const double DBL_PI = 4.0*std::atan(1.0); static const double DBL_TWO_PI = 2.0*DBL_PI; static const double DBL_HALF_PI = 0.5*DBL_PI; static const double DBL_INVERSE_PI = 1.0/DBL_PI; static const double DBL_INVERSE_TWO_PI = 1.0/DBL_TWO_PI; static const double DBL_DEG_TO_RAD = DBL_PI/180.0; static const double DBL_RAD_TO_DEG = 180.0f/DBL_PI; static const double DBL_LOG_2 = std::log(2.0); static const double DBL_LOG_10 = std::log(10.0); static const double DBL_INV_LOG_2 = 1.0/std::log(2.0); static const double DBL_INV_LOG_10 = 1.0/std::log(10.0); template <class numT> struct float_traits { }; template <> struct float_traits<float> { typedef float float_type; static inline float_type epsilon() { return FLT_STD_EPSILON; } static inline float_type zeroTolerance() { return FLT_ZERO_TOLERANCE; } static inline float_type max() { return FLT_STD_MAX; } static inline float_type pi() { return FLT_PI; } static inline float_type twoPi() { return FLT_TWO_PI; } static inline float_type halfPi() { return FLT_HALF_PI; } static inline float_type inversePi() { return FLT_INVERSE_PI; } static inline float_type inverseTwoPi() { return FLT_INVERSE_TWO_PI; } static inline float_type degToRad() { return FLT_DEG_TO_RAD; } static inline float_type radToDeg() { return FLT_RAD_TO_DEG; } static inline float_type log2() { return FLT_LOG_2; } static inline float_type log10() { return FLT_LOG_10; } static inline float_type invLog2() { return FLT_INV_LOG_2; } static inline float_type invLog10() { return FLT_INV_LOG_10; } }; template <> struct float_traits<double> { typedef double float_type; static inline float_type epsilon() { return DBL_STD_EPSILON; } static inline float_type zeroTolerance() { return DBL_ZERO_TOLERANCE; } static inline float_type max() { return DBL_STD_MAX; } static inline float_type pi() { return DBL_PI; } static inline float_type twoPi() { return DBL_TWO_PI; } static inline float_type halfPi() { return DBL_HALF_PI; } static inline float_type inversePi() { return DBL_INVERSE_PI; } static inline float_type inverseTwoPi() { return DBL_INVERSE_TWO_PI; } static inline float_type degToRad() { return DBL_DEG_TO_RAD; } static inline float_type radToDeg() { return DBL_RAD_TO_DEG; } static inline float_type log2() { return DBL_LOG_2; } static inline float_type log10() { return DBL_LOG_10; } static inline float_type invLog2() { return DBL_INV_LOG_2; } static inline float_type invLog10() { return DBL_INV_LOG_10; } }; template <typename T> class Math { public: typedef T num_type; typedef float_traits<num_type> traits_type; static inline num_type epsilon() { return traits_type::epsilon(); } static inline num_type zeroTolerance() { return traits_type::zeroTolerance(); } static inline num_type max() { return traits_type::max(); } static inline num_type pi() { return traits_type::pi(); } static inline num_type twoPi() { return traits_type::twoPi(); } static inline num_type halfPi() { return traits_type::halfPi(); } static inline num_type inversePi() { return traits_type::inversePi(); } static inline num_type inverseTwoPi() { return traits_type::inverseTwoPi(); } static inline num_type degToRad() { return traits_type::degToRad(); } static inline num_type radToDeg() { return traits_type::radToDeg(); } static inline num_type log2() { return traits_type::log2(); } static inline num_type log10() { return traits_type::log10(); } static inline num_type invLog2() { return traits_type::invLog2(); } static inline num_type invLog10() { return traits_type::invLog10(); } static T ACos(T _val); static T ASin(T _val); static T ATan(T _val); static T ATan2(T _x, T _y); static T Ceil(T _val); static T Cos(T _val); static T Exp(T _val); static T FAbs(T _val); static T Floor(T _val); static T FMod (T _x, T _y); static T InvSqrt(T _val); static T Log(T _val); static T Log2(T _val); static T Log10(T _val); static T Pow(T _base, T _exponent); static T Sin(T _val); static T Sqr(T _val); static T Sqrt(T _val); static T Tan(T _val); }; typedef Math<float> Mathf; typedef Math<double> Mathd; template<typename T> inline T Math<T>::ACos(T _val) { if (-static_cast<T>(1) < _val) { if (_val < static_cast<T>(1)) { return static_cast<T>(std::acos(_val)); } else { return static_cast<T>(0); } } else { return pi(); } } template <class T> inline T Math<T>::ASin(T _val) { if (-static_cast<T>(1) < _val) { if (_val < static_cast<T>(1)) { return static_cast<T>(std::asin(_val)); } else { return halfPi(); } } else { return -halfPi(); } } template <class T> inline T Math<T>::ATan(T _val) { return static_cast<T>(std::atan(_val)); } template <class T> inline T Math<T>::ATan2(T _x, T _y) { return static_cast<T>(std::atan2(_x, _y)); } template <class T> inline T Math<T>::Ceil(T _val) { return static_cast<T>(std::ceil(_val)); } template <class T> inline T Math<T>::Cos(T _val) { return static_cast<T>(std::cos(_val)); } template <class T> inline T Math<T>::Exp(T _val){ return static_cast<T>(std::exp(_val)); } template <class T> inline T Math<T>::FAbs(T _val) { return static_cast<T>(std::fabs(_val)); } template <class T> inline T Math<T>::Floor(T _val) { return static_cast<T>(std::floor(_val)); } template <class T> inline T Math<T>::FMod(T _x, T _y) { return static_cast<T>(std::fmod(_x, _y)); } template <class T> inline T Math<T>::InvSqrt(T _val) { return static_cast<T>(1/std::sqrt(_val)); } template <class T> inline T Math<T>::Log(T _val) { return static_cast<T>(std::log(_val)); } template <class T> inline T Math<T>::Log2(T _val) { return invLog2() * static_cast<T>(std::log(_val)); } template <class T> inline T Math<T>::Log10(T _val) { return invLog10() * static_cast<T>(std::log(_val)); } template <class T> inline T Math<T>::Pow(T _base, T _exponent) { return static_cast<T>(std::pow(_base, _exponent)); } template <class T> inline T Math<T>::Sin(T _val) { return static_cast<T>(std::sin(_val)); } template <class T> inline T Math<T>::Sqr(T _val) { return _val*_val; } template <class T> inline T Math<T>::Sqrt(T _val) { return static_cast<T>(std::sqrt(_val)); } template <class T> inline T Math<T>::Tan(T _val) { return static_cast<T>(std::tan(_val)); } /** Returns the next higher power of 2 based on the passed argument */ inline unsigned nextPow2(unsigned x) { --x; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return ++x; } } //FIFE #endif // FIFE_UTIL_FIFE_MATH_H