Mercurial > SDL_sound_CoreAudio
view decoders/libmpg123/layer3.c @ 591:8faf61a640f0 tip
Resynced fixes for unit conversion bugs in the Ogg Tremor decoder from SoundDecoder/ALmixer.
Ogg Vorbis uses seconds and we multiply by 1000 to convert to milliseconds. But Ogg Tremor already uses milliseconds but I was still multiplying by 1000.
author | Eric Wing <ewing . public |-at-| gmail . com> |
---|---|
date | Thu, 25 Oct 2012 16:34:18 -0700 |
parents | 7e08477b0fc1 |
children |
line wrap: on
line source
/* leyer3.c: the layer 3 decoder copyright 1995-2008 by the mpg123 project - free software under the terms of the LGPL 2.1 see COPYING and AUTHORS files in distribution or http://mpg123.org initially written by Michael Hipp Optimize-TODO: put short bands into the band-field without the stride of 3 reals Length-optimze: unify long and short band code where it is possible The int-vs-pointer situation has to be cleaned up. */ #include "mpg123lib_intern.h" #include "huffman.h" #include "getbits.h" #include "debug.h" /* static one-time calculated tables... or so */ static real ispow[8207]; static real aa_ca[8],aa_cs[8]; static real COS1[12][6]; static real win[4][36]; static real win1[4][36]; real COS9[9]; /* dct36_3dnow wants to use that */ static real COS6_1,COS6_2; real tfcos36[9]; /* dct36_3dnow wants to use that */ static real tfcos12[3]; #define NEW_DCT9 #ifdef NEW_DCT9 static real cos9[3],cos18[3]; #endif struct gr_info_s { int scfsi; unsigned part2_3_length; unsigned big_values; unsigned scalefac_compress; unsigned block_type; unsigned mixed_block_flag; unsigned table_select[3]; unsigned subblock_gain[3]; unsigned maxband[3]; unsigned maxbandl; unsigned maxb; unsigned region1start; unsigned region2start; unsigned preflag; unsigned scalefac_scale; unsigned count1table_select; real *full_gain[3]; real *pow2gain; }; struct III_sideinfo { unsigned main_data_begin; unsigned private_bits; struct { struct gr_info_s gr[2]; } ch[2]; }; struct bandInfoStruct { int longIdx[23]; int longDiff[22]; int shortIdx[14]; int shortDiff[13]; }; const struct bandInfoStruct bandInfo[9] = { /* MPEG 1.0 */ { {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576}, {4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158}, {0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3}, {4,4,4,4,6,8,10,12,14,18,22,30,56} } , { {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576}, {4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192}, {0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3}, {4,4,4,4,6,6,10,12,14,16,20,26,66} } , { {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} , {4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} , {0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} , {4,4,4,4,6,8,12,16,20,26,34,42,12} } , /* MPEG 2.0 */ { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576}, {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } , {0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} , {4,4,4,6,6,8,10,14,18,26,32,42,18 } } , /* Twiddling 3 values here (not just 330->332!) fixed bug 1895025. */ { {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576}, {6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } , {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} , {4,4,4,6,8,10,12,14,18,24,32,44,12 } } , { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576}, {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 }, {0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3}, {4,4,4,6,8,10,12,14,18,24,30,40,18 } } , /* MPEG 2.5 */ { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} , {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54}, {0,12,24,36,54,78,108,144,186,240,312,402,522,576}, {4,4,4,6,8,10,12,14,18,24,30,40,18} }, { {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} , {6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54}, {0,12,24,36,54,78,108,144,186,240,312,402,522,576}, {4,4,4,6,8,10,12,14,18,24,30,40,18} }, { {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576}, {12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2}, {0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576}, {8,8,8,12,16,20,24,28,36,2,2,2,26} } , }; static int mapbuf0[9][152]; static int mapbuf1[9][156]; static int mapbuf2[9][44]; static int *map[9][3]; static int *mapend[9][3]; static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */ static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */ static real tan1_1[16],tan2_1[16],tan1_2[16],tan2_2[16]; static real pow1_1[2][16],pow2_1[2][16],pow1_2[2][16],pow2_2[2][16]; #ifdef OPT_MMXORSSE real init_layer3_gainpow2_mmx(mpg123_handle *fr, int i) { if(!fr->p.down_sample) return 16384.0 * pow((double)2.0,-0.25 * (double) (i+210) ); else return DOUBLE_TO_REAL(pow((double)2.0,-0.25 * (double) (i+210))); } #endif real init_layer3_gainpow2(mpg123_handle *fr, int i) { return DOUBLE_TO_REAL(pow((double)2.0,-0.25 * (double) (i+210))); } /* * init tables for layer-3 ... specific with the downsampling... */ void init_layer3(void) { int i,j,k,l; for(i=0;i<8207;i++) ispow[i] = DOUBLE_TO_REAL(pow((double)i,(double)4.0/3.0)); for (i=0;i<8;i++) { const double Ci[8]={-0.6,-0.535,-0.33,-0.185,-0.095,-0.041,-0.0142,-0.0037}; double sq=sqrt(1.0+Ci[i]*Ci[i]); aa_cs[i] = DOUBLE_TO_REAL(1.0/sq); aa_ca[i] = DOUBLE_TO_REAL(Ci[i]/sq); } for(i=0;i<18;i++) { win[0][i] = win[1][i] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 72.0 * (double) (2*(i+0) +1) ) / cos ( M_PI * (double) (2*(i+0) +19) / 72.0 )); win[0][i+18] = win[3][i+18] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 72.0 * (double) (2*(i+18)+1) ) / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 )); } for(i=0;i<6;i++) { win[1][i+18] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+18)+19) / 72.0 )); win[3][i+12] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (2*(i+12)+19) / 72.0 )); win[1][i+24] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+13) ) / cos ( M_PI * (double) (2*(i+24)+19) / 72.0 )); win[1][i+30] = win[3][i] = DOUBLE_TO_REAL(0.0); win[3][i+6 ] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*(i+6 )+19) / 72.0 )); } for(i=0;i<9;i++) COS9[i] = DOUBLE_TO_REAL(cos( M_PI / 18.0 * (double) i)); for(i=0;i<9;i++) tfcos36[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 36.0 )); for(i=0;i<3;i++) tfcos12[i] = DOUBLE_TO_REAL(0.5 / cos ( M_PI * (double) (i*2+1) / 12.0 )); COS6_1 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 1)); COS6_2 = DOUBLE_TO_REAL(cos( M_PI / 6.0 * (double) 2)); #ifdef NEW_DCT9 cos9[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/9.0)); cos9[1] = DOUBLE_TO_REAL(cos(5.0*M_PI/9.0)); cos9[2] = DOUBLE_TO_REAL(cos(7.0*M_PI/9.0)); cos18[0] = DOUBLE_TO_REAL(cos(1.0*M_PI/18.0)); cos18[1] = DOUBLE_TO_REAL(cos(11.0*M_PI/18.0)); cos18[2] = DOUBLE_TO_REAL(cos(13.0*M_PI/18.0)); #endif for(i=0;i<12;i++) { win[2][i] = DOUBLE_TO_REAL(0.5 * sin( M_PI / 24.0 * (double) (2*i+1) ) / cos ( M_PI * (double) (2*i+7) / 24.0 )); for(j=0;j<6;j++) COS1[i][j] = DOUBLE_TO_REAL(cos( M_PI / 24.0 * (double) ((2*i+7)*(2*j+1)) )); } for(j=0;j<4;j++) { const int len[4] = { 36,36,12,36 }; for(i=0;i<len[j];i+=2) win1[j][i] = + win[j][i]; for(i=1;i<len[j];i+=2) win1[j][i] = - win[j][i]; } for(i=0;i<16;i++) { double t = tan( (double) i * M_PI / 12.0 ); tan1_1[i] = DOUBLE_TO_REAL(t / (1.0+t)); tan2_1[i] = DOUBLE_TO_REAL(1.0 / (1.0 + t)); tan1_2[i] = DOUBLE_TO_REAL(M_SQRT2 * t / (1.0+t)); tan2_2[i] = DOUBLE_TO_REAL(M_SQRT2 / (1.0 + t)); for(j=0;j<2;j++) { double base = pow(2.0,-0.25*(j+1.0)); double p1=1.0,p2=1.0; if(i > 0) { if( i & 1 ) p1 = pow(base,(i+1.0)*0.5); else p2 = pow(base,i*0.5); } pow1_1[j][i] = DOUBLE_TO_REAL(p1); pow2_1[j][i] = DOUBLE_TO_REAL(p2); pow1_2[j][i] = DOUBLE_TO_REAL(M_SQRT2 * p1); pow2_2[j][i] = DOUBLE_TO_REAL(M_SQRT2 * p2); } } for(j=0;j<9;j++) { const struct bandInfoStruct *bi = &bandInfo[j]; int *mp; int cb,lwin; const int *bdf; mp = map[j][0] = mapbuf0[j]; bdf = bi->longDiff; for(i=0,cb = 0; cb < 8 ; cb++,i+=*bdf++) { *mp++ = (*bdf) >> 1; *mp++ = i; *mp++ = 3; *mp++ = cb; } bdf = bi->shortDiff+3; for(cb=3;cb<13;cb++) { int l = (*bdf++) >> 1; for(lwin=0;lwin<3;lwin++) { *mp++ = l; *mp++ = i + lwin; *mp++ = lwin; *mp++ = cb; } i += 6*l; } mapend[j][0] = mp; mp = map[j][1] = mapbuf1[j]; bdf = bi->shortDiff+0; for(i=0,cb=0;cb<13;cb++) { int l = (*bdf++) >> 1; for(lwin=0;lwin<3;lwin++) { *mp++ = l; *mp++ = i + lwin; *mp++ = lwin; *mp++ = cb; } i += 6*l; } mapend[j][1] = mp; mp = map[j][2] = mapbuf2[j]; bdf = bi->longDiff; for(cb = 0; cb < 22 ; cb++) { *mp++ = (*bdf++) >> 1; *mp++ = cb; } mapend[j][2] = mp; } for(i=0;i<5;i++) { for(j=0;j<6;j++) { for(k=0;k<6;k++) { int n = k + j * 6 + i * 36; i_slen2[n] = i|(j<<3)|(k<<6)|(3<<12); } } } for(i=0;i<4;i++) { for(j=0;j<4;j++) { for(k=0;k<4;k++) { int n = k + j * 4 + i * 16; i_slen2[n+180] = i|(j<<3)|(k<<6)|(4<<12); } } } for(i=0;i<4;i++) { for(j=0;j<3;j++) { int n = j + i * 3; i_slen2[n+244] = i|(j<<3) | (5<<12); n_slen2[n+500] = i|(j<<3) | (2<<12) | (1<<15); } } for(i=0;i<5;i++) { for(j=0;j<5;j++) { for(k=0;k<4;k++) { for(l=0;l<4;l++) { int n = l + k * 4 + j * 16 + i * 80; n_slen2[n] = i|(j<<3)|(k<<6)|(l<<9)|(0<<12); } } } } for(i=0;i<5;i++) { for(j=0;j<5;j++) { for(k=0;k<4;k++) { int n = k + j * 4 + i * 20; n_slen2[n+400] = i|(j<<3)|(k<<6)|(1<<12); } } } } void init_layer3_stuff(mpg123_handle *fr) { int i,j; for(i=-256;i<118+4;i++) fr->gainpow2[i+256] = opt_init_layer3_gainpow2(fr)(fr,i); for(j=0;j<9;j++) { for(i=0;i<23;i++) { fr->longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1; if(fr->longLimit[j][i] > (fr->down_sample_sblimit) ) fr->longLimit[j][i] = fr->down_sample_sblimit; } for(i=0;i<14;i++) { fr->shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1; if(fr->shortLimit[j][i] > (fr->down_sample_sblimit) ) fr->shortLimit[j][i] = fr->down_sample_sblimit; } } } /* * read additional side information (for MPEG 1 and MPEG 2) */ static int III_get_side_info(mpg123_handle *fr, struct III_sideinfo *si,int stereo, int ms_stereo,long sfreq,int single) { int ch, gr; int powdiff = (single == SINGLE_MIX) ? 4 : 0; const int tabs[2][5] = { { 2,9,5,3,4 } , { 1,8,1,2,9 } }; const int *tab = tabs[fr->lsf]; si->main_data_begin = getbits(fr, tab[1]); if(si->main_data_begin > fr->bitreservoir) { if(NOQUIET) error2("missing %d bytes in bit reservoir for frame %li", (int)(si->main_data_begin - fr->bitreservoir), (long)fr->num); /* overwrite main_data_begin for the really available bit reservoir */ backbits(fr, tab[1]); if(fr->lsf == 0) { fr->wordpointer[0] = (unsigned char) (fr->bitreservoir >> 1); fr->wordpointer[1] = (unsigned char) ((fr->bitreservoir & 1) << 7); } else fr->wordpointer[0] = (unsigned char) fr->bitreservoir; /* zero "side-info" data for a silence-frame without touching audio data used as bit reservoir for following frame */ memset(fr->wordpointer+2, 0, fr->ssize-2); /* reread the new bit reservoir offset */ si->main_data_begin = getbits(fr, tab[1]); } /* Keep track of the available data bytes for the bit reservoir. Think: Substract the 2 crc bytes in parser already? */ fr->bitreservoir = fr->bitreservoir + fr->framesize - fr->ssize - (fr->error_protection ? 2 : 0); /* Limit the reservoir to the max for MPEG 1.0 or 2.x . */ if(fr->bitreservoir > (fr->lsf == 0 ? 511 : 255)) fr->bitreservoir = (fr->lsf == 0 ? 511 : 255); if (stereo == 1) si->private_bits = getbits_fast(fr, tab[2]); else si->private_bits = getbits_fast(fr, tab[3]); if(!fr->lsf) { for (ch=0; ch<stereo; ch++) { si->ch[ch].gr[0].scfsi = -1; si->ch[ch].gr[1].scfsi = getbits_fast(fr, 4); } } for (gr=0; gr<tab[0]; gr++) { for (ch=0; ch<stereo; ch++) { register struct gr_info_s *gr_info = &(si->ch[ch].gr[gr]); gr_info->part2_3_length = getbits(fr, 12); gr_info->big_values = getbits(fr, 9); if(gr_info->big_values > 288) { error("big_values too large!"); gr_info->big_values = 288; } gr_info->pow2gain = fr->gainpow2+256 - getbits_fast(fr, 8) + powdiff; if(ms_stereo) gr_info->pow2gain += 2; gr_info->scalefac_compress = getbits(fr, tab[4]); if(get1bit(fr)) { /* window switch flag */ int i; gr_info->block_type = getbits_fast(fr, 2); gr_info->mixed_block_flag = get1bit(fr); gr_info->table_select[0] = getbits_fast(fr, 5); gr_info->table_select[1] = getbits_fast(fr, 5); /* * table_select[2] not needed, because there is no region2, * but to satisfy some verifications tools we set it either. */ gr_info->table_select[2] = 0; for(i=0;i<3;i++) gr_info->full_gain[i] = gr_info->pow2gain + (getbits_fast(fr, 3)<<3); if(gr_info->block_type == 0) { error("Blocktype == 0 and window-switching == 1 not allowed."); /* exit(1); */ return 1; } /* region_count/start parameters are implicit in this case. */ if( (!fr->lsf || (gr_info->block_type == 2)) && !fr->mpeg25) { gr_info->region1start = 36>>1; gr_info->region2start = 576>>1; } else { if(fr->mpeg25) { int r0c,r1c; if((gr_info->block_type == 2) && (!gr_info->mixed_block_flag) ) r0c = 5; else r0c = 7; r1c = 20 - r0c; gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ; gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1; } else { gr_info->region1start = 54>>1; gr_info->region2start = 576>>1; } } } else { int i,r0c,r1c; for (i=0; i<3; i++) gr_info->table_select[i] = getbits_fast(fr, 5); r0c = getbits_fast(fr, 4); r1c = getbits_fast(fr, 3); gr_info->region1start = bandInfo[sfreq].longIdx[r0c+1] >> 1 ; gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1; if(r0c + r1c + 2 > 22) gr_info->region2start = 576>>1; else gr_info->region2start = bandInfo[sfreq].longIdx[r0c+1+r1c+1] >> 1; gr_info->block_type = 0; gr_info->mixed_block_flag = 0; } if(!fr->lsf) gr_info->preflag = get1bit(fr); gr_info->scalefac_scale = get1bit(fr); gr_info->count1table_select = get1bit(fr); } } return 0; } /* * read scalefactors */ static int III_get_scale_factors_1(mpg123_handle *fr, int *scf,struct gr_info_s *gr_info,int ch,int gr) { const unsigned char slen[2][16] = { {0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4}, {0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3} }; int numbits; int num0 = slen[0][gr_info->scalefac_compress]; int num1 = slen[1][gr_info->scalefac_compress]; if (gr_info->block_type == 2) { int i=18; numbits = (num0 + num1) * 18; if (gr_info->mixed_block_flag) { for (i=8;i;i--) *scf++ = getbits_fast(fr, num0); i = 9; numbits -= num0; /* num0 * 17 + num1 * 18 */ } for (;i;i--) *scf++ = getbits_fast(fr, num0); for (i = 18; i; i--) *scf++ = getbits_fast(fr, num1); *scf++ = 0; *scf++ = 0; *scf++ = 0; /* short[13][0..2] = 0 */ } else { int i; int scfsi = gr_info->scfsi; if(scfsi < 0) { /* scfsi < 0 => granule == 0 */ for(i=11;i;i--) *scf++ = getbits_fast(fr, num0); for(i=10;i;i--) *scf++ = getbits_fast(fr, num1); numbits = (num0 + num1) * 10 + num0; *scf++ = 0; } else { numbits = 0; if(!(scfsi & 0x8)) { for (i=0;i<6;i++) *scf++ = getbits_fast(fr, num0); numbits += num0 * 6; } else { scf += 6; } if(!(scfsi & 0x4)) { for (i=0;i<5;i++) *scf++ = getbits_fast(fr, num0); numbits += num0 * 5; } else { scf += 5; } if(!(scfsi & 0x2)) { for(i=0;i<5;i++) *scf++ = getbits_fast(fr, num1); numbits += num1 * 5; } else { scf += 5; } if(!(scfsi & 0x1)) { for (i=0;i<5;i++) *scf++ = getbits_fast(fr, num1); numbits += num1 * 5; } else { scf += 5; } *scf++ = 0; /* no l[21] in original sources */ } } return numbits; } static int III_get_scale_factors_2(mpg123_handle *fr, int *scf,struct gr_info_s *gr_info,int i_stereo) { const unsigned char *pnt; int i,j,n=0,numbits=0; unsigned int slen; const unsigned char stab[3][6][4] = { { { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} , { 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } , { { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} , {12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } , { { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} , { 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } }; if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */ slen = i_slen2[gr_info->scalefac_compress>>1]; else slen = n_slen2[gr_info->scalefac_compress]; gr_info->preflag = (slen>>15) & 0x1; n = 0; if( gr_info->block_type == 2 ) { n++; if(gr_info->mixed_block_flag) n++; } pnt = stab[n][(slen>>12)&0x7]; for(i=0;i<4;i++) { int num = slen & 0x7; slen >>= 3; if(num) { for(j=0;j<(int)(pnt[i]);j++) *scf++ = getbits_fast(fr, num); numbits += pnt[i] * num; } else { for(j=0;j<(int)(pnt[i]);j++) *scf++ = 0; } } n = (n << 1) + 1; for(i=0;i<n;i++) *scf++ = 0; return numbits; } static const int pretab1[22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0}; static const int pretab2[22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /* * Dequantize samples (includes huffman decoding) */ /* 24 is enough because tab13 has max. a 19 bit huffvector */ #define BITSHIFT ((sizeof(long)-1)*8) #define REFRESH_MASK \ while(num < BITSHIFT) { \ mask |= ((unsigned long)getbyte(fr))<<(BITSHIFT-num); \ num += 8; \ part2remain -= 8; } static int III_dequantize_sample(mpg123_handle *fr, real xr[SBLIMIT][SSLIMIT],int *scf, struct gr_info_s *gr_info,int sfreq,int part2bits) { int shift = 1 + gr_info->scalefac_scale; real *xrpnt = (real *) xr; int l[3],l3; int part2remain = gr_info->part2_3_length - part2bits; int *me; /* mhipp tree has this split up a bit... */ int num=getbitoffset(fr); long mask; /* We must split this, because for num==0 the shift is undefined if you do it in one step. */ mask = ((unsigned long) getbits(fr, num))<<BITSHIFT; mask <<= 8-num; part2remain -= num; { int bv = gr_info->big_values; int region1 = gr_info->region1start; int region2 = gr_info->region2start; if(region1 > region2) { /* That's not optimal: it fixes a segfault with fuzzed data, but also apparently triggers where it shouldn't, see bug 1641196. The benefit of not crashing / having this security risk is bigger than these few frames of a lame-3.70 file that aren't audible anyway But still, I want to know if indeed this check or the old lame is at fault. */ error("You got some really nasty file there... region1>region2!"); return 1; } l3 = ((576>>1)-bv)>>1; /* * we may lose the 'odd' bit here !! * check this later again */ if(bv <= region1) { l[0] = bv; l[1] = 0; l[2] = 0; } else { l[0] = region1; if(bv <= region2) { l[1] = bv - l[0]; l[2] = 0; } else { l[1] = region2 - l[0]; l[2] = bv - region2; } } } if(gr_info->block_type == 2) { /* * decoding with short or mixed mode BandIndex table */ int i,max[4]; int step=0,lwin=3,cb=0; register real v = 0.0; register int *m,mc; if(gr_info->mixed_block_flag) { max[3] = -1; max[0] = max[1] = max[2] = 2; m = map[sfreq][0]; me = mapend[sfreq][0]; } else { max[0] = max[1] = max[2] = max[3] = -1; /* max[3] not really needed in this case */ m = map[sfreq][1]; me = mapend[sfreq][1]; } mc = 0; for(i=0;i<2;i++) { int lp = l[i]; struct newhuff *h = ht+gr_info->table_select[i]; for(;lp;lp--,mc--) { register int x,y; if( (!mc) ) { mc = *m++; xrpnt = ((real *) xr) + (*m++); lwin = *m++; cb = *m++; if(lwin == 3) { v = gr_info->pow2gain[(*scf++) << shift]; step = 1; } else { v = gr_info->full_gain[lwin][(*scf++) << shift]; step = 3; } } { register short *val = h->table; REFRESH_MASK; while((y=*val++)<0) { if (mask < 0) val -= y; num--; mask <<= 1; } x = y >> 4; y &= 0xf; } if(x == 15 && h->linbits) { max[lwin] = cb; REFRESH_MASK; x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits); num -= h->linbits+1; mask <<= h->linbits; if(mask < 0) *xrpnt = REAL_MUL(-ispow[x], v); else *xrpnt = REAL_MUL(ispow[x], v); mask <<= 1; } else if(x) { max[lwin] = cb; if(mask < 0) *xrpnt = REAL_MUL(-ispow[x], v); else *xrpnt = REAL_MUL(ispow[x], v); num--; mask <<= 1; } else *xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += step; if(y == 15 && h->linbits) { max[lwin] = cb; REFRESH_MASK; y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits); num -= h->linbits+1; mask <<= h->linbits; if(mask < 0) *xrpnt = REAL_MUL(-ispow[y], v); else *xrpnt = REAL_MUL(ispow[y], v); mask <<= 1; } else if(y) { max[lwin] = cb; if(mask < 0) *xrpnt = REAL_MUL(-ispow[y], v); else *xrpnt = REAL_MUL(ispow[y], v); num--; mask <<= 1; } else *xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += step; } } for(;l3 && (part2remain+num > 0);l3--) { /* not mixing code and declarations to keep C89 happy */ struct newhuff* h; register short* val; register short a; /* This is only a humble hack to prevent a special segfault. */ /* More insight into the real workings is still needed. */ /* especially why there are (valid?) files that make xrpnt exceed the array with 4 bytes without segfaulting, more seems to be really bad, though. */ #ifdef DEBUG if(!(xrpnt < &xr[SBLIMIT][0])) { if(VERBOSE) debug2("attempted soft xrpnt overflow (%p !< %p) ?", (void*) xrpnt, (void*) &xr[SBLIMIT][0]); } #endif if(!(xrpnt < &xr[SBLIMIT][0]+5)) { error2("attempted xrpnt overflow (%p !< %p)", (void*) xrpnt, (void*) &xr[SBLIMIT][0]); return 2; } h = htc+gr_info->count1table_select; val = h->table; REFRESH_MASK; while((a=*val++)<0) { if (mask < 0) val -= a; num--; mask <<= 1; } if(part2remain+num <= 0) { num -= part2remain+num; break; } for(i=0;i<4;i++) { if(!(i & 1)) { if(!mc) { mc = *m++; xrpnt = ((real *) xr) + (*m++); lwin = *m++; cb = *m++; if(lwin == 3) { v = gr_info->pow2gain[(*scf++) << shift]; step = 1; } else { v = gr_info->full_gain[lwin][(*scf++) << shift]; step = 3; } } mc--; } if( (a & (0x8>>i)) ) { max[lwin] = cb; if(part2remain+num <= 0) { break; } if(mask < 0) *xrpnt = -v; else *xrpnt = v; num--; mask <<= 1; } else *xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += step; } } if(lwin < 3) { /* short band? */ while(1) { for(;mc > 0;mc--) { *xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3; /* short band -> step=3 */ *xrpnt = DOUBLE_TO_REAL(0.0); xrpnt += 3; } if(m >= me) break; mc = *m++; xrpnt = ((real *) xr) + *m++; if(*m++ == 0) break; /* optimize: field will be set to zero at the end of the function */ m++; /* cb */ } } gr_info->maxband[0] = max[0]+1; gr_info->maxband[1] = max[1]+1; gr_info->maxband[2] = max[2]+1; gr_info->maxbandl = max[3]+1; { int rmax = max[0] > max[1] ? max[0] : max[1]; rmax = (rmax > max[2] ? rmax : max[2]) + 1; gr_info->maxb = rmax ? fr->shortLimit[sfreq][rmax] : fr->longLimit[sfreq][max[3]+1]; } } else { /* * decoding with 'long' BandIndex table (block_type != 2) */ const int *pretab = gr_info->preflag ? pretab1 : pretab2; int i,max = -1; int cb = 0; int *m = map[sfreq][2]; register real v = 0.0; int mc = 0; /* * long hash table values */ for(i=0;i<3;i++) { int lp = l[i]; struct newhuff *h = ht+gr_info->table_select[i]; for(;lp;lp--,mc--) { int x,y; if(!mc) { mc = *m++; cb = *m++; if(cb == 21) v = 0.0; else v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift]; } { register short *val = h->table; REFRESH_MASK; while((y=*val++)<0) { if (mask < 0) val -= y; num--; mask <<= 1; } x = y >> 4; y &= 0xf; } if (x == 15 && h->linbits) { max = cb; REFRESH_MASK; x += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits); num -= h->linbits+1; mask <<= h->linbits; if(mask < 0) *xrpnt++ = REAL_MUL(-ispow[x], v); else *xrpnt++ = REAL_MUL(ispow[x], v); mask <<= 1; } else if(x) { max = cb; if(mask < 0) *xrpnt++ = REAL_MUL(-ispow[x], v); else *xrpnt++ = REAL_MUL(ispow[x], v); num--; mask <<= 1; } else *xrpnt++ = DOUBLE_TO_REAL(0.0); if (y == 15 && h->linbits) { max = cb; REFRESH_MASK; y += ((unsigned long) mask) >> (BITSHIFT+8-h->linbits); num -= h->linbits+1; mask <<= h->linbits; if(mask < 0) *xrpnt++ = REAL_MUL(-ispow[y], v); else *xrpnt++ = REAL_MUL(ispow[y], v); mask <<= 1; } else if(y) { max = cb; if(mask < 0) *xrpnt++ = REAL_MUL(-ispow[y], v); else *xrpnt++ = REAL_MUL(ispow[y], v); num--; mask <<= 1; } else *xrpnt++ = DOUBLE_TO_REAL(0.0); } } /* * short (count1table) values */ for(;l3 && (part2remain+num > 0);l3--) { struct newhuff *h = htc+gr_info->count1table_select; register short *val = h->table,a; REFRESH_MASK; while((a=*val++)<0) { if (mask < 0) val -= a; num--; mask <<= 1; } if(part2remain+num <= 0) { num -= part2remain+num; break; } for(i=0;i<4;i++) { if(!(i & 1)) { if(!mc) { mc = *m++; cb = *m++; if(cb == 21) v = 0.0; else v = gr_info->pow2gain[((*scf++) + (*pretab++)) << shift]; } mc--; } if ( (a & (0x8>>i)) ) { max = cb; if(part2remain+num <= 0) { break; } if(mask < 0) *xrpnt++ = -v; else *xrpnt++ = v; num--; mask <<= 1; } else *xrpnt++ = DOUBLE_TO_REAL(0.0); } } gr_info->maxbandl = max+1; gr_info->maxb = fr->longLimit[sfreq][gr_info->maxbandl]; } part2remain += num; backbits(fr, num); num = 0; while(xrpnt < &xr[SBLIMIT][0]) *xrpnt++ = DOUBLE_TO_REAL(0.0); while( part2remain > 16 ) { skipbits(fr, 16); /* Dismiss stuffing Bits */ part2remain -= 16; } if(part2remain > 0) skipbits(fr, part2remain); else if(part2remain < 0) { debug1("Can't rewind stream by %d bits!",-part2remain); return 1; /* -> error */ } return 0; } /* * III_stereo: calculate real channel values for Joint-I-Stereo-mode */ static void III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT],int *scalefac, struct gr_info_s *gr_info,int sfreq,int ms_stereo,int lsf) { real (*xr)[SBLIMIT*SSLIMIT] = (real (*)[SBLIMIT*SSLIMIT] ) xr_buf; const struct bandInfoStruct *bi = &bandInfo[sfreq]; const real *tab1,*tab2; #if 1 int tab; /* TODO: optimize as static */ const real *tabs[3][2][2] = { { { tan1_1,tan2_1 } , { tan1_2,tan2_2 } }, { { pow1_1[0],pow2_1[0] } , { pow1_2[0],pow2_2[0] } } , { { pow1_1[1],pow2_1[1] } , { pow1_2[1],pow2_2[1] } } }; tab = lsf + (gr_info->scalefac_compress & lsf); tab1 = tabs[tab][ms_stereo][0]; tab2 = tabs[tab][ms_stereo][1]; #else if(lsf) { int p = gr_info->scalefac_compress & 0x1; if(ms_stereo) { tab1 = pow1_2[p]; tab2 = pow2_2[p]; } else { tab1 = pow1_1[p]; tab2 = pow2_1[p]; } } else { if(ms_stereo) { tab1 = tan1_2; tab2 = tan2_2; } else { tab1 = tan1_1; tab2 = tan2_1; } } #endif if (gr_info->block_type == 2) { int lwin,do_l = 0; if( gr_info->mixed_block_flag ) do_l = 1; for (lwin=0;lwin<3;lwin++) { /* process each window */ /* get first band with zero values */ int is_p,sb,idx,sfb = gr_info->maxband[lwin]; /* sfb is minimal 3 for mixed mode */ if(sfb > 3) do_l = 0; for(;sfb<12;sfb++) { is_p = scalefac[sfb*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */ if(is_p != 7) { real t1,t2; sb = bi->shortDiff[sfb]; idx = bi->shortIdx[sfb] + lwin; t1 = tab1[is_p]; t2 = tab2[is_p]; for (; sb > 0; sb--,idx+=3) { real v = xr[0][idx]; xr[0][idx] = REAL_MUL(v, t1); xr[1][idx] = REAL_MUL(v, t2); } } } #if 1 /* in the original: copy 10 to 11 , here: copy 11 to 12 maybe still wrong??? (copy 12 to 13?) */ is_p = scalefac[11*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */ sb = bi->shortDiff[12]; idx = bi->shortIdx[12] + lwin; #else is_p = scalefac[10*3+lwin-gr_info->mixed_block_flag]; /* scale: 0-15 */ sb = bi->shortDiff[11]; idx = bi->shortIdx[11] + lwin; #endif if(is_p != 7) { real t1,t2; t1 = tab1[is_p]; t2 = tab2[is_p]; for ( ; sb > 0; sb--,idx+=3 ) { real v = xr[0][idx]; xr[0][idx] = REAL_MUL(v, t1); xr[1][idx] = REAL_MUL(v, t2); } } } /* end for(lwin; .. ; . ) */ /* also check l-part, if ALL bands in the three windows are 'empty' * and mode = mixed_mode */ if (do_l) { int sfb = gr_info->maxbandl; int idx; if(sfb > 21) return; /* similarity fix related to CVE-2006-1655 */ idx = bi->longIdx[sfb]; for ( ; sfb<8; sfb++ ) { int sb = bi->longDiff[sfb]; int is_p = scalefac[sfb]; /* scale: 0-15 */ if(is_p != 7) { real t1,t2; t1 = tab1[is_p]; t2 = tab2[is_p]; for ( ; sb > 0; sb--,idx++) { real v = xr[0][idx]; xr[0][idx] = REAL_MUL(v, t1); xr[1][idx] = REAL_MUL(v, t2); } } else idx += sb; } } } else { /* ((gr_info->block_type != 2)) */ int sfb = gr_info->maxbandl; int is_p,idx; if(sfb > 21) return; /* tightened fix for CVE-2006-1655 */ idx = bi->longIdx[sfb]; for ( ; sfb<21; sfb++) { int sb = bi->longDiff[sfb]; is_p = scalefac[sfb]; /* scale: 0-15 */ if(is_p != 7) { real t1,t2; t1 = tab1[is_p]; t2 = tab2[is_p]; for ( ; sb > 0; sb--,idx++) { real v = xr[0][idx]; xr[0][idx] = REAL_MUL(v, t1); xr[1][idx] = REAL_MUL(v, t2); } } else idx += sb; } is_p = scalefac[20]; if(is_p != 7) { /* copy l-band 20 to l-band 21 */ int sb; real t1 = tab1[is_p],t2 = tab2[is_p]; for ( sb = bi->longDiff[21]; sb > 0; sb--,idx++ ) { real v = xr[0][idx]; xr[0][idx] = REAL_MUL(v, t1); xr[1][idx] = REAL_MUL(v, t2); } } } /* ... */ } static void III_antialias(real xr[SBLIMIT][SSLIMIT],struct gr_info_s *gr_info) { int sblim; if(gr_info->block_type == 2) { if(!gr_info->mixed_block_flag) return; sblim = 1; } else { sblim = gr_info->maxb-1; } /* 31 alias-reduction operations between each pair of sub-bands */ /* with 8 butterflies between each pair */ { int sb; real *xr1=(real *) xr[1]; for(sb=sblim;sb;sb--,xr1+=10) { int ss; real *cs=aa_cs,*ca=aa_ca; real *xr2 = xr1; for(ss=7;ss>=0;ss--) { /* upper and lower butterfly inputs */ register real bu = *--xr2,bd = *xr1; *xr2 = REAL_MUL(bu, *cs) - REAL_MUL(bd, *ca); *xr1++ = REAL_MUL(bd, *cs++) + REAL_MUL(bu, *ca++); } } } } /* // This is an optimized DCT from Jeff Tsay's maplay 1.2+ package. // Saved one multiplication by doing the 'twiddle factor' stuff // together with the window mul. (MH) // // This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the // 9 point IDCT needs to be reduced further. Unfortunately, I don't // know how to do that, because 9 is not an even number. - Jeff. // ////////////////////////////////////////////////////////////////// // // 9 Point Inverse Discrete Cosine Transform // // This piece of code is Copyright 1997 Mikko Tommila and is freely usable // by anybody. The algorithm itself is of course in the public domain. // // Again derived heuristically from the 9-point WFTA. // // The algorithm is optimized (?) for speed, not for small rounding errors or // good readability. // // 36 additions, 11 multiplications // // Again this is very likely sub-optimal. // // The code is optimized to use a minimum number of temporary variables, // so it should compile quite well even on 8-register Intel x86 processors. // This makes the code quite obfuscated and very difficult to understand. // // References: // [1] S. Winograd: "On Computing the Discrete Fourier Transform", // Mathematics of Computation, Volume 32, Number 141, January 1978, // Pages 175-199 */ /*------------------------------------------------------------------*/ /* */ /* Function: Calculation of the inverse MDCT */ /* */ /*------------------------------------------------------------------*/ /* used to be static without 3dnow - does that really matter? */ void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf) { #ifdef NEW_DCT9 real tmp[18]; #endif { register real *in = inbuf; in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14]; in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11]; in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8]; in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5]; in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2]; in[2] +=in[1]; in[1] +=in[0]; in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9]; in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1]; #ifdef NEW_DCT9 #if 1 { real t3; { real t0, t1, t2; t0 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4])); t1 = REAL_MUL(COS6_2, in[12]); t3 = in[0]; t2 = t3 - t1 - t1; tmp[1] = tmp[7] = t2 - t0; tmp[4] = t2 + t0 + t0; t3 += t1; t2 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2])); tmp[1] -= t2; tmp[7] += t2; } { real t0, t1, t2; t0 = REAL_MUL(cos9[0], (in[4] + in[8] )); t1 = REAL_MUL(cos9[1], (in[8] - in[16])); t2 = REAL_MUL(cos9[2], (in[4] + in[16])); tmp[2] = tmp[6] = t3 - t0 - t2; tmp[0] = tmp[8] = t3 + t0 + t1; tmp[3] = tmp[5] = t3 - t1 + t2; } } { real t1, t2, t3; t1 = REAL_MUL(cos18[0], (in[2] + in[10])); t2 = REAL_MUL(cos18[1], (in[10] - in[14])); t3 = REAL_MUL(COS6_1, in[6]); { real t0 = t1 + t2 + t3; tmp[0] += t0; tmp[8] -= t0; } t2 -= t3; t1 -= t3; t3 = REAL_MUL(cos18[2], (in[2] + in[14])); t1 += t3; tmp[3] += t1; tmp[5] -= t1; t2 -= t3; tmp[2] += t2; tmp[6] -= t2; } #else { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = REAL_MUL(COS6_2, in[12]); t2 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4])); t3 = in[0] + t1; t4 = in[0] - t1 - t1; t5 = t4 - t2; tmp[4] = t4 + t2 + t2; t0 = REAL_MUL(cos9[0], (in[4] + in[8])); t1 = REAL_MUL(cos9[1], (in[8] - in[16])); t2 = REAL_MUL(cos9[2], (in[4] + in[16])); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = REAL_MUL(cos18[0], (in[2] + in[10])); t4 = REAL_MUL(cos18[1], (in[10] - in[14])); t7 = REAL_MUL(COS6_1, in[6]); t1 = t2 + t4 + t7; tmp[0] = t0 + t1; tmp[8] = t0 - t1; t1 = REAL_MUL(cos18[2], (in[2] + in[14])); t2 += t1 - t7; tmp[3] = t3 + t2; t0 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2])); tmp[5] = t3 - t2; t4 -= t1 + t7; tmp[1] = t5 - t0; tmp[7] = t5 + t0; tmp[2] = t6 + t4; tmp[6] = t6 - t4; } #endif { real t0, t1, t2, t3, t4, t5, t6, t7; t1 = REAL_MUL(COS6_2, in[13]); t2 = REAL_MUL(COS6_2, (in[9] + in[17] - in[5])); t3 = in[1] + t1; t4 = in[1] - t1 - t1; t5 = t4 - t2; t0 = REAL_MUL(cos9[0], (in[5] + in[9])); t1 = REAL_MUL(cos9[1], (in[9] - in[17])); tmp[13] = REAL_MUL((t4 + t2 + t2), tfcos36[17-13]); t2 = REAL_MUL(cos9[2], (in[5] + in[17])); t6 = t3 - t0 - t2; t0 += t3 + t1; t3 += t2 - t1; t2 = REAL_MUL(cos18[0], (in[3] + in[11])); t4 = REAL_MUL(cos18[1], (in[11] - in[15])); t7 = REAL_MUL(COS6_1, in[7]); t1 = t2 + t4 + t7; tmp[17] = REAL_MUL((t0 + t1), tfcos36[17-17]); tmp[9] = REAL_MUL((t0 - t1), tfcos36[17-9]); t1 = REAL_MUL(cos18[2], (in[3] + in[15])); t2 += t1 - t7; tmp[14] = REAL_MUL((t3 + t2), tfcos36[17-14]); t0 = REAL_MUL(COS6_1, (in[11] + in[15] - in[3])); tmp[12] = REAL_MUL((t3 - t2), tfcos36[17-12]); t4 -= t1 + t7; tmp[16] = REAL_MUL((t5 - t0), tfcos36[17-16]); tmp[10] = REAL_MUL((t5 + t0), tfcos36[17-10]); tmp[15] = REAL_MUL((t6 + t4), tfcos36[17-15]); tmp[11] = REAL_MUL((t6 - t4), tfcos36[17-11]); } #define MACRO(v) { \ real tmpval; \ tmpval = tmp[(v)] + tmp[17-(v)]; \ out2[9+(v)] = REAL_MUL(tmpval, w[27+(v)]); \ out2[8-(v)] = REAL_MUL(tmpval, w[26-(v)]); \ tmpval = tmp[(v)] - tmp[17-(v)]; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(tmpval, w[8-(v)]); \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(tmpval, w[9+(v)]); } { register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; MACRO(0); MACRO(1); MACRO(2); MACRO(3); MACRO(4); MACRO(5); MACRO(6); MACRO(7); MACRO(8); } #else { #define MACRO0(v) { \ real tmp; \ out2[9+(v)] = REAL_MUL((tmp = sum0 + sum1), w[27+(v)]); \ out2[8-(v)] = REAL_MUL(tmp, w[26-(v)]); } \ sum0 -= sum1; \ ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(sum0, w[8-(v)]); \ ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(sum0, w[9+(v)]); #define MACRO1(v) { \ real sum0,sum1; \ sum0 = tmp1a + tmp2a; \ sum1 = REAL_MUL((tmp1b + tmp2b), tfcos36[(v)]); \ MACRO0(v); } #define MACRO2(v) { \ real sum0,sum1; \ sum0 = tmp2a - tmp1a; \ sum1 = REAL_MUL((tmp2b - tmp1b), tfcos36[(v)]); \ MACRO0(v); } register const real *c = COS9; register real *out2 = o2; register real *w = wintab; register real *out1 = o1; register real *ts = tsbuf; real ta33,ta66,tb33,tb66; ta33 = REAL_MUL(in[2*3+0], c[3]); ta66 = REAL_MUL(in[2*6+0], c[6]); tb33 = REAL_MUL(in[2*3+1], c[3]); tb66 = REAL_MUL(in[2*6+1], c[6]); { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = REAL_MUL(in[2*1+0], c[1]) + ta33 + REAL_MUL(in[2*5+0], c[5]) + REAL_MUL(in[2*7+0], c[7]); tmp1b = REAL_MUL(in[2*1+1], c[1]) + tb33 + REAL_MUL(in[2*5+1], c[5]) + REAL_MUL(in[2*7+1], c[7]); tmp2a = REAL_MUL(in[2*2+0], c[2]) + REAL_MUL(in[2*4+0], c[4]) + ta66 + REAL_MUL(in[2*8+0], c[8]); tmp2b = REAL_MUL(in[2*2+1], c[2]) + REAL_MUL(in[2*4+1], c[4]) + tb66 + REAL_MUL(in[2*8+1], c[8]); MACRO1(0); MACRO2(8); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = REAL_MUL(( in[2*1+0] - in[2*5+0] - in[2*7+0] ), c[3]); tmp1b = REAL_MUL(( in[2*1+1] - in[2*5+1] - in[2*7+1] ), c[3]); tmp2a = REAL_MUL(( in[2*2+0] - in[2*4+0] - in[2*8+0] ), c[6]) - in[2*6+0] + in[2*0+0]; tmp2b = REAL_MUL(( in[2*2+1] - in[2*4+1] - in[2*8+1] ), c[6]) - in[2*6+1] + in[2*0+1]; MACRO1(1); MACRO2(7); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = REAL_MUL(in[2*1+0], c[5]) - ta33 - REAL_MUL(in[2*5+0], c[7]) + REAL_MUL(in[2*7+0], c[1]); tmp1b = REAL_MUL(in[2*1+1], c[5]) - tb33 - REAL_MUL(in[2*5+1], c[7]) + REAL_MUL(in[2*7+1], c[1]); tmp2a = - REAL_MUL(in[2*2+0], c[8]) - REAL_MUL(in[2*4+0], c[2]) + ta66 + REAL_MUL(in[2*8+0], c[4]); tmp2b = - REAL_MUL(in[2*2+1], c[8]) - REAL_MUL(in[2*4+1], c[2]) + tb66 + REAL_MUL(in[2*8+1], c[4]); MACRO1(2); MACRO2(6); } { real tmp1a,tmp2a,tmp1b,tmp2b; tmp1a = REAL_MUL(in[2*1+0], c[7]) - ta33 + REAL_MUL(in[2*5+0], c[1]) - REAL_MUL(in[2*7+0], c[5]); tmp1b = REAL_MUL(in[2*1+1], c[7]) - tb33 + REAL_MUL(in[2*5+1], c[1]) - REAL_MUL(in[2*7+1], c[5]); tmp2a = - REAL_MUL(in[2*2+0], c[4]) + REAL_MUL(in[2*4+0], c[8]) + ta66 - REAL_MUL(in[2*8+0], c[2]); tmp2b = - REAL_MUL(in[2*2+1], c[4]) + REAL_MUL(in[2*4+1], c[8]) + tb66 - REAL_MUL(in[2*8+1], c[2]); MACRO1(3); MACRO2(5); } { real sum0,sum1; sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0]; sum1 = REAL_MUL((in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ), tfcos36[4]); MACRO0(4); } } #endif } } /* * new DCT12 */ static void dct12(real *in,real *rawout1,real *rawout2,register real *wi,register real *ts) { #define DCT12_PART1 \ in5 = in[5*3]; \ in5 += (in4 = in[4*3]); \ in4 += (in3 = in[3*3]); \ in3 += (in2 = in[2*3]); \ in2 += (in1 = in[1*3]); \ in1 += (in0 = in[0*3]); \ \ in5 += in3; in3 += in1; \ \ in2 = REAL_MUL(in2, COS6_1); \ in3 = REAL_MUL(in3, COS6_1); \ #define DCT12_PART2 \ in0 += REAL_MUL(in4, COS6_2); \ \ in4 = in0 + in2; \ in0 -= in2; \ \ in1 += REAL_MUL(in5, COS6_2); \ \ in5 = REAL_MUL((in1 + in3), tfcos12[0]); \ in1 = REAL_MUL((in1 - in3), tfcos12[2]); \ \ in3 = in4 + in5; \ in4 -= in5; \ \ in2 = in0 + in1; \ in0 -= in1; { real in0,in1,in2,in3,in4,in5; register real *out1 = rawout1; ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2]; ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5]; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]); tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } ts[(17-1)*SBLIMIT] = out1[17-1] + REAL_MUL(tmp0, wi[11-1]); ts[(12+1)*SBLIMIT] = out1[12+1] + REAL_MUL(tmp0, wi[6+1]); ts[(6 +1)*SBLIMIT] = out1[6 +1] + REAL_MUL(tmp1, wi[1]); ts[(11-1)*SBLIMIT] = out1[11-1] + REAL_MUL(tmp1, wi[5-1]); } DCT12_PART2 ts[(17-0)*SBLIMIT] = out1[17-0] + REAL_MUL(in2, wi[11-0]); ts[(12+0)*SBLIMIT] = out1[12+0] + REAL_MUL(in2, wi[6+0]); ts[(12+2)*SBLIMIT] = out1[12+2] + REAL_MUL(in3, wi[6+2]); ts[(17-2)*SBLIMIT] = out1[17-2] + REAL_MUL(in3, wi[11-2]); ts[(6 +0)*SBLIMIT] = out1[6+0] + REAL_MUL(in0, wi[0]); ts[(11-0)*SBLIMIT] = out1[11-0] + REAL_MUL(in0, wi[5-0]); ts[(6 +2)*SBLIMIT] = out1[6+2] + REAL_MUL(in4, wi[2]); ts[(11-2)*SBLIMIT] = out1[11-2] + REAL_MUL(in4, wi[5-2]); } in++; { real in0,in1,in2,in3,in4,in5; register real *out2 = rawout2; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]); tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } out2[5-1] = REAL_MUL(tmp0, wi[11-1]); out2[0+1] = REAL_MUL(tmp0, wi[6+1]); ts[(12+1)*SBLIMIT] += REAL_MUL(tmp1, wi[1]); ts[(17-1)*SBLIMIT] += REAL_MUL(tmp1, wi[5-1]); } DCT12_PART2 out2[5-0] = REAL_MUL(in2, wi[11-0]); out2[0+0] = REAL_MUL(in2, wi[6+0]); out2[0+2] = REAL_MUL(in3, wi[6+2]); out2[5-2] = REAL_MUL(in3, wi[11-2]); ts[(12+0)*SBLIMIT] += REAL_MUL(in0, wi[0]); ts[(17-0)*SBLIMIT] += REAL_MUL(in0, wi[5-0]); ts[(12+2)*SBLIMIT] += REAL_MUL(in4, wi[2]); ts[(17-2)*SBLIMIT] += REAL_MUL(in4, wi[5-2]); } in++; { real in0,in1,in2,in3,in4,in5; register real *out2 = rawout2; out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0; DCT12_PART1 { real tmp0,tmp1 = (in0 - in4); { real tmp2 = REAL_MUL((in1 - in5), tfcos12[1]); tmp0 = tmp1 + tmp2; tmp1 -= tmp2; } out2[11-1] = REAL_MUL(tmp0, wi[11-1]); out2[6 +1] = REAL_MUL(tmp0, wi[6+1]); out2[0+1] += REAL_MUL(tmp1, wi[1]); out2[5-1] += REAL_MUL(tmp1, wi[5-1]); } DCT12_PART2 out2[11-0] = REAL_MUL(in2, wi[11-0]); out2[6 +0] = REAL_MUL(in2, wi[6+0]); out2[6 +2] = REAL_MUL(in3, wi[6+2]); out2[11-2] = REAL_MUL(in3, wi[11-2]); out2[0+0] += REAL_MUL(in0, wi[0]); out2[5-0] += REAL_MUL(in0, wi[5-0]); out2[0+2] += REAL_MUL(in4, wi[2]); out2[5-2] += REAL_MUL(in4, wi[5-2]); } } /* * III_hybrid */ static void III_hybrid(real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT], int ch,struct gr_info_s *gr_info, mpg123_handle *fr) { real (*block)[2][SBLIMIT*SSLIMIT] = fr->hybrid_block; int *blc = fr->hybrid_blc; real *tspnt = (real *) tsOut; real *rawout1,*rawout2; int bt,sb = 0; { int b = blc[ch]; rawout1=block[b][ch]; b=-b+1; rawout2=block[b][ch]; blc[ch] = b; } if(gr_info->mixed_block_flag) { sb = 2; opt_dct36(fr)(fsIn[0],rawout1,rawout2,win[0],tspnt); opt_dct36(fr)(fsIn[1],rawout1+18,rawout2+18,win1[0],tspnt+1); rawout1 += 36; rawout2 += 36; tspnt += 2; } bt = gr_info->block_type; if(bt == 2) { for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) { dct12(fsIn[sb] ,rawout1 ,rawout2 ,win[2] ,tspnt); dct12(fsIn[sb+1],rawout1+18,rawout2+18,win1[2],tspnt+1); } } else { for (; sb<gr_info->maxb; sb+=2,tspnt+=2,rawout1+=36,rawout2+=36) { opt_dct36(fr)(fsIn[sb],rawout1,rawout2,win[bt],tspnt); opt_dct36(fr)(fsIn[sb+1],rawout1+18,rawout2+18,win1[bt],tspnt+1); } } for(;sb<SBLIMIT;sb++,tspnt++) { int i; for(i=0;i<SSLIMIT;i++) { tspnt[i*SBLIMIT] = *rawout1++; *rawout2++ = DOUBLE_TO_REAL(0.0); } } } /* * main layer3 handler */ int do_layer3(mpg123_handle *fr) { int gr, ch, ss,clip=0; int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */ struct III_sideinfo sideinfo; int stereo = fr->stereo; int single = fr->single; int ms_stereo,i_stereo; int sfreq = fr->sampling_frequency; int stereo1,granules; if(stereo == 1) { /* stream is mono */ stereo1 = 1; single = SINGLE_LEFT; } else if(single != SINGLE_STEREO) /* stream is stereo, but force to mono */ stereo1 = 1; else stereo1 = 2; if(fr->mode == MPG_MD_JOINT_STEREO) { ms_stereo = (fr->mode_ext & 0x2)>>1; i_stereo = fr->mode_ext & 0x1; } else ms_stereo = i_stereo = 0; if(fr->lsf) { granules = 1; } else { granules = 2; } /* quick hack to keep the music playing */ /* after having seen this nasty test file... */ if(III_get_side_info(fr, &sideinfo,stereo,ms_stereo,sfreq,single)) { error("bad frame - unable to get valid sideinfo"); return clip; } set_pointer(fr,sideinfo.main_data_begin); for (gr=0;gr<granules;gr++) { ALIGNED(16) real hybridIn[2][SBLIMIT][SSLIMIT]; ALIGNED(16) real hybridOut[2][SSLIMIT][SBLIMIT]; { struct gr_info_s *gr_info = &(sideinfo.ch[0].gr[gr]); long part2bits; if(fr->lsf) part2bits = III_get_scale_factors_2(fr, scalefacs[0],gr_info,0); else part2bits = III_get_scale_factors_1(fr, scalefacs[0],gr_info,0,gr); if(III_dequantize_sample(fr, hybridIn[0], scalefacs[0],gr_info,sfreq,part2bits)) return clip; } if(stereo == 2) { struct gr_info_s *gr_info = &(sideinfo.ch[1].gr[gr]); long part2bits; if(fr->lsf) part2bits = III_get_scale_factors_2(fr, scalefacs[1],gr_info,i_stereo); else part2bits = III_get_scale_factors_1(fr, scalefacs[1],gr_info,1,gr); if(III_dequantize_sample(fr, hybridIn[1],scalefacs[1],gr_info,sfreq,part2bits)) return clip; if(ms_stereo) { int i; int maxb = sideinfo.ch[0].gr[gr].maxb; if(sideinfo.ch[1].gr[gr].maxb > maxb) maxb = sideinfo.ch[1].gr[gr].maxb; for(i=0;i<SSLIMIT*maxb;i++) { real tmp0 = ((real *)hybridIn[0])[i]; real tmp1 = ((real *)hybridIn[1])[i]; ((real *)hybridIn[0])[i] = tmp0 + tmp1; ((real *)hybridIn[1])[i] = tmp0 - tmp1; } } if(i_stereo) III_i_stereo(hybridIn,scalefacs[1],gr_info,sfreq,ms_stereo,fr->lsf); if(ms_stereo || i_stereo || (single == SINGLE_MIX) ) { if(gr_info->maxb > sideinfo.ch[0].gr[gr].maxb) sideinfo.ch[0].gr[gr].maxb = gr_info->maxb; else gr_info->maxb = sideinfo.ch[0].gr[gr].maxb; } switch(single) { case SINGLE_MIX: { register int i; register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1]; for(i=0;i<SSLIMIT*gr_info->maxb;i++,in0++) *in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */ } break; case SINGLE_RIGHT: { register int i; register real *in0 = (real *) hybridIn[0],*in1 = (real *) hybridIn[1]; for(i=0;i<SSLIMIT*gr_info->maxb;i++) *in0++ = *in1++; } break; } } for(ch=0;ch<stereo1;ch++) { struct gr_info_s *gr_info = &(sideinfo.ch[ch].gr[gr]); III_antialias(hybridIn[ch],gr_info); III_hybrid(hybridIn[ch], hybridOut[ch], ch,gr_info, fr); } #ifdef OPT_I486 if (fr->synth != opt_synth_1to1(fr) || single != SINGLE_STEREO) { #endif for(ss=0;ss<SSLIMIT;ss++) { if(single != SINGLE_STEREO) { clip += (fr->synth_mono)(hybridOut[0][ss], fr); } else { clip += (fr->synth)(hybridOut[0][ss], 0, fr, 0); clip += (fr->synth)(hybridOut[1][ss], 1, fr, 1); } } #ifdef OPT_I486 } else { /* Only stereo, 16 bits benefit from the 486 optimization. */ ss=0; while (ss < SSLIMIT) { int n; n=(fr->buffer.size - fr->buffer.fill) / (2*2*32); if (n > (SSLIMIT-ss)) n=SSLIMIT-ss; synth_1to1_486(hybridOut[0][ss], 0, fr, n); synth_1to1_486(hybridOut[1][ss], 1, fr, n); ss+=n; fr->buffer.fill+=(2*2*32)*n; } } #endif } return clip; }