view orpg/mapper/grid.py @ 18:97265586402b ornery-orc

Traipse 'OpenRPG' {090827-00} Traipse is a distribution of OpenRPG that is designed to be easy to setup and go. Traipse also makes it easy for developers to work on code without fear of sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code. 'Ornery-Orc''s main goal is to offer more advanced features and enhance the productivity of the user. Update Summary: Update Manager is now in version 0.8. While not every button works, users can now browse the different revisions and their different changesets. The code has been refined some with feature from Core added to it. A Crash report is now created if the users software crashes. Update Manager has been moved to the Traipse Suite menu item, and a Debug Console as been added as well.
author sirebral
date Thu, 27 Aug 2009 01:04:43 -0500
parents 211ac836b6a0
children ff154cf3350c
line wrap: on
line source

# Copyright (C) 2000-2001 The OpenRPG Project
#
#    openrpg-dev@lists.sourceforge.net
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
# --
#
# File: mapper/gird.py
# Author: OpenRPG Team
# Maintainer:
# Version:
#   $Id: grid.py,v 1.29 2007/12/07 20:39:49 digitalxero Exp $
#
# Description:
#
__version__ = "$Id: grid.py,v 1.29 2007/12/07 20:39:49 digitalxero Exp $"

from base import *
from isometric import *
from miniatures import SNAPTO_ALIGN_CENTER
from miniatures import SNAPTO_ALIGN_TL
from math import floor

# Grid mode constants
GRID_RECTANGLE = 0
GRID_HEXAGON = 1
GRID_ISOMETRIC = 2
LINE_NONE = 0
LINE_DOTTED = 1
LINE_SOLID = 2
RATIO_DEFAULT = 2.0

##-----------------------------
## grid layer
##-----------------------------
class grid_layer(layer_base):

    def __init__(self, canvas):
        layer_base.__init__(self)
        self.canvas = canvas
        self.iso_ratio = RATIO_DEFAULT  #2:1 isometric ratio
        self.mapscale = 1.0
        self.unit_size = 100
        self.unit_size_y = 100
        #unit_widest and unit_offset are for the Hex Grid only. 
        #These are mathematics to figure out the exact center of the hex
        self.unit_widest = 100
        self.unit_offset = 100
        #size_ratio is the size ajustment for Hex and ISO to make them more accurate
        self.size_ratio = 1.5
        self.snap = True
        self.color = wx.BLACK# = color.Get()
        #self.color = cmpColour(r,g,b)
        self.r_h = RGBHex()
        self.mode = GRID_RECTANGLE
        self.line = LINE_NONE
        # Keep logic for different modes in different functions
        self.grid_hit_test = self.grid_hit_test_rect
        self.get_top_corner = self.get_top_corner_rect
        self.layerDraw = self.draw_rect
        self.isUpdated = True

    def get_unit_size(self):
        return self.unit_size

    def get_iso_ratio(self):
        return self.iso_ratio

    def get_mode(self):
        return self.mode

    def get_color(self):
        return self.color

    def get_line_type(self):
        return self.line

    def is_snap(self):
        return self.snap

    def get_snapped_to_pos(self, pos, snap_to_align, mini_width, mini_height):
        grid_pos = self.grid_hit_test(pos)
        if grid_pos is not None:
            topLeft = self.get_top_corner(grid_pos)#  get the top corner for this grid cell
            if snap_to_align == SNAPTO_ALIGN_CENTER:
                if self.mode == GRID_HEXAGON:
                    x = topLeft.x + (((self.unit_size/1.75) - mini_width) /2)
                    y = topLeft.y + ((self.unit_size - mini_height) /2)
                elif self.mode == GRID_ISOMETRIC:
                    x = (topLeft.x)-(mini_width/2)
                    y = (topLeft.y)-(mini_height)
                else:# GRID_RECTANGLE
                    x = topLeft.x + ((self.unit_size - mini_width) / 2)
                    y = topLeft.y + ((self.unit_size_y - mini_height) /2)
            else:
                x = topLeft.x
                y = topLeft.y
            return cmpPoint(int(x),int(y)) #  Set the pos attribute
        else: return cmpPoint(int(pos.x),int(pos.y))

    def set_rect_mode(self):
        "switch grid to rectangular mode"
        self.mode = GRID_RECTANGLE
        self.grid_hit_test = self.grid_hit_test_rect
        self.get_top_corner = self.get_top_corner_rect
        self.layerDraw = self.draw_rect
        self.unit_size_y = self.unit_size

    def set_hex_mode(self):
        "switch grid to hexagonal mode"
        self.mode = GRID_HEXAGON
        self.grid_hit_test = self.grid_hit_test_hex
        self.get_top_corner = self.get_top_corner_hex
        self.layerDraw = self.draw_hex
        self.unit_size_y = self.unit_size
        self.unit_offset = sqrt(pow((self.unit_size/self.size_ratio ),2)-pow((self.unit_size/2),2))
        self.unit_widest = (self.unit_offset*2)+(self.unit_size/self.size_ratio )

    def set_iso_mode(self):
        "switch grid to hexagonal mode"
        self.mode = GRID_ISOMETRIC
        self.grid_hit_test = self.grid_hit_test_iso
        self.get_top_corner = self.get_top_corner_iso
        self.layerDraw = self.draw_iso
        self.unit_size_y = self.unit_size

    def set_line_none(self):
        "switch to no line mode for grid"
        self.line = LINE_NONE

    def set_line_dotted(self):
        "switch to dotted line mode for grid"
        self.line = LINE_DOTTED

    def set_line_solid(self):
        "switch to solid line mode for grid"
        self.line = LINE_SOLID

    def grid_hit_test_rect(self,pos):
        "return grid pos (w,h) on rect map from pos"
        if self.unit_size and self.snap: return cmpPoint(int(pos.x/self.unit_size), int(pos.y/self.unit_size))
        else: return None

    def grid_hit_test_hex(self,pos):
        "return grid pos (w,h) on hex map from pos"
        if self.unit_size and self.snap:
            # rectangular repeat patern is as follows (unit_size is the height of a hex)
            hex_side = int(self.unit_size/1.75)
            half_height = int(self.unit_size/2)
            height = int(self.unit_size)
            #_____
            #     \       /
            #      \_____/
            #      /     \
            #_____/       \
            col = int(pos.x/(hex_side*1.5))
            row = int(pos.y/height)
            (px, py) = (pos.x-(col*(hex_side*1.5)), pos.y-(row*height))
            # adjust for the odd columns' rows being staggered lower
            if col % 2 == 1:
                if py < half_height:
                    row = row - 1
                    py = py + half_height
                else: py = py - half_height
            # adjust for top right corner
            if (px * height - py * hex_side) > height * hex_side:
                if col % 2 == 0: row = row - 1
                col = col + 1
            # adjust for bottom right corner
            elif (px * height + py * hex_side) > 2 * height * hex_side:
                if col%2==1: row = row + 1
                col = col + 1
            return cmpPoint(col, row)
        else: return None

    def grid_hit_test_iso(self,pos):
        "return grid pos (w,h) on isometric map from pos"
        if self.unit_size and self.snap:
            height = self.unit_size*self.size_ratio/self.iso_ratio
            width = self.unit_size*self.size_ratio
            iso_unit_size = height * width
            # convert to isometric pos which has an origin of cell (0,0)
            # x-ord increasing as you go up and right, y-ord increasing as you go down and right
            # this is the transformation from grid co-ord to iso co-ords
            iso_x = (pos.x*height) - (pos.y*width) + (iso_unit_size/2)
            iso_y = (pos.x*height) + (pos.y*width) - (iso_unit_size/2)
            #
            #  /\
            # /  \
            #/    \
            #\    /
            # \  /
            #  \/
            # so the exact isomorphic (0,0) is the left corner of the first (ie. top left) diamond
            # this is at grid co-ordinate (0, height/2)
            # the top corner of the first diamond is grid co-ord (width/2, 0)
            # and therefore (per transformation above) is at iso co-ord (iso_unit_size, 0)
            # the bottom corner of the first diamond is grid co-ord (width/2, height)
            # and therefore (per transformation above) is at iso co-ord (0, iso_unit_size)
            # the calculation is now as simple as the rectangle case, but using iso co-ords
            return cmpPoint(floor(iso_x/iso_unit_size), floor(iso_y/iso_unit_size))
        else: return None

    def get_top_corner_iso(self, iso_pos):
        "return upper left of a iso grid pos"
        # for whatever reason the iso grid returns the center of the diamond for "top left corner"
        if self.unit_size:
            half_height = self.unit_size*self.size_ratio/(2*self.iso_ratio)
            half_width = self.unit_size*self.size_ratio/2
            # convert back into grid co-ordinates of center of diamond
            grid_x = (iso_pos.y*half_width) + (iso_pos.x*half_width) + half_width
            grid_y = (iso_pos.y*half_height) - (iso_pos.x*half_height) + half_height
            return cmpPoint(int(grid_x), int(grid_y))
        else: return None

    def get_top_corner_rect(self,grid_pos):
        "return upper left of a rect grid pos"
        if self.unit_size: return cmpPoint(grid_pos[0]*self.unit_size,grid_pos[1]*self.unit_size)
        else: return None

    def get_top_corner_hex(self,grid_pos):
        "return upper left of a hex grid pos"
        if self.unit_size:
            # We can get our x value directly, y is trickier
            temp_x = (((self.unit_size/1.75)*1.5)*grid_pos[0])
            temp_y = self.unit_size*grid_pos[1]
            # On odd columns we have to slide down slightly
            if grid_pos[0] % 2:
                temp_y += self.unit_size/2
            return cmpPoint(temp_x,temp_y)
        else: return None

    def set_grid(self, unit_size, snap, color, mode, line, ratio=None):
        self.unit_size = unit_size
        if ratio != None: self.iso_ratio = ratio
        self.snap = snap
        self.set_color(color)
        self.SetMode(mode)
        self.SetLine(line)

    def SetLine(self,line):
        if line == LINE_NONE: self.set_line_none()
        elif line == LINE_DOTTED: self.set_line_dotted()
        elif line == LINE_SOLID: self.set_line_solid()

    def SetMode(self, mode):
        if mode == GRID_RECTANGLE: self.set_rect_mode()
        elif mode == GRID_HEXAGON: self.set_hex_mode()
        elif mode == GRID_ISOMETRIC: self.set_iso_mode()

    def return_grid(self):
        return self.canvas.size

    def set_color(self,color):
        (r,g,b) = color.Get()
        self.color = cmpColour(r,g,b)

    def draw_iso(self,dc,topleft,clientsize):
        if not self.unit_size: return
        if self.line == LINE_NONE: return
        if self.line == LINE_SOLID: dc.SetPen(wx.Pen(self.color,1,wx.SOLID))
        else: dc.SetPen(wx.Pen(self.color,1,wx.DOT))
        sz = self.canvas.size

        # Enable DC optimizations if available on a platform
        dc.BeginDrawing()

        # create IsoGrid helper object
        IG = IsoGrid(self.unit_size*self.size_ratio)
        IG.Ratio(self.iso_ratio)
        rows = int(min(clientsize[1]+topleft[1],sz[1])/IG.height)
        cols = int(min(clientsize[0]+topleft[0],sz[0])/IG.width)
        for y in range(rows+1):
            for x in range(cols+1):
                IG.BoundPlace((x*IG.width),(y*IG.height))
                x1,y1 = IG.Top()
                x2,y2 = IG.Left()
                dc.DrawLine(x1,y1,x2,y2)
                x1,y1 = IG.Left()
                x2,y2 = IG.Bottom()
                dc.DrawLine(x1,y1,x2,y2)
                x1,y1 = IG.Bottom()
                x2,y2 = IG.Right()
                dc.DrawLine(x1,y1,x2,y2)
                x1,y1 = IG.Right()
                x2,y2 = IG.Top()
                dc.DrawLine(x1,y1,x2,y2)
        # Enable DC optimizations if available on a platform
        dc.EndDrawing()
        dc.SetPen(wx.NullPen)
        # Disable pen/brush optimizations to prevent any odd effects elsewhere

    def draw_rect(self,dc,topleft,clientsize):
        if self.unit_size:
            draw = 1
            # Enable pen/brush optimizations if available on a platform
            if self.line == LINE_NONE: draw = 0
            elif self.line == LINE_SOLID: dc.SetPen(wx.Pen(self.color,1,wx.SOLID))
            else: dc.SetPen(wx.Pen(self.color,1,wx.DOT))
            if draw:
                sz = self.canvas.size
                # Enable DC optimizations if available on a platform
                dc.BeginDrawing()
                # Now, draw the map grid
                x = 0
                s = self.unit_size
                x = int(topleft[0]/s)*s
                mx = min(clientsize[0]+topleft[0],sz[0])
                my = min(clientsize[1]+topleft[1],sz[1])
                while x < mx:
                    dc.DrawLine(x,topleft[1],x,my)
                    x += self.unit_size
                y = 0
                y = int (topleft[1]/s)*s
                while y < my:
                    dc.DrawLine(topleft[0],y,mx,y)
                    y += self.unit_size
                # Enable DC optimizations if available on a platform
                dc.EndDrawing()
                dc.SetPen(wx.NullPen)
            # Disable pen/brush optimizations to prevent any odd effects elsewhere

    def draw_hex(self,dc,topleft,clientsize):
        if self.unit_size:
            draw = 1
            # Enable pen/brush optimizations if available on a platform
            if self.line == LINE_NONE: draw = 0
            elif self.line == LINE_SOLID: dc.SetPen(wx.Pen(self.color,1,wx.SOLID))
            else: dc.SetPen(wx.Pen(self.color,1,wx.DOT))
            if draw:
                sz = self.canvas.size
                x = 0
                A = self.unit_size/1.75 #Side Length
                B = self.unit_size #The width between any two sides
                D = self.unit_size/2 #The distance from the top to the middle of the hex
                C = self.unit_size/3.5 #The distance from the point of the hex to the point where the top line starts

                #   _____
                #  /     \
                # /       \
                # \       /
                #  \_____/

                startx=int(topleft[0]/(3*A))*(3*A)
                starty=int(topleft[1]/B)*B
                y = starty
                mx = min(clientsize[0]+topleft[0],sz[0])
                my = min(clientsize[1]+topleft[1],sz[1])
                while y < my:
                    x = startx
                    lineArray = []
                    while x < mx:
                        #The top / Bottom of the Hex
                        lineArray.append((x, y))
                        lineArray.append((x+A, y))
                        #The Right Top Side of the Hex
                        lineArray.append((x+A, y))
                        lineArray.append((x+A+C, y+D))
                        #The Right Bottom Side of the Hex
                        lineArray.append((x+A+C, y+D))
                        lineArray.append((x+A, y+B))
                        #The Top / of the Middle Hex
                        lineArray.append((x+A+C, y+D))
                        lineArray.append((x+A+C+A, y+D))
                        #The Left Bottom Side of the Hex
                        lineArray.append((x+A+C+A, y+D))
                        lineArray.append((x+A+C+A+C, y+B))
                        #The left Top Side of the Hex
                        lineArray.append((x+A+C+A, y+D))
                        lineArray.append((x+A+C+A+C, y))
                        x += A*3
                    y += B
                    dc.DrawLines(lineArray)
                dc.SetPen(wx.NullPen)
            # Disable pen/brush optimizations to prevent any odd effects elsewhere

    def layerToXML(self,action = "update"):
        xml_str = "<grid"
        if self.color != None:
            (red,green,blue) = self.color.Get()
            hexcolor = self.r_h.hexstring(red, green, blue)
            xml_str += " color='" + hexcolor + "'"
        if self.unit_size != None: xml_str += " size='" + str(self.unit_size) + "'"
        if self.iso_ratio != None: xml_str += " ratio='" + str(self.iso_ratio) + "'"
        if self.snap != None:
            if self.snap: xml_str += " snap='1'"
            else: xml_str += " snap='0'"
        if self.mode != None: xml_str+= "  mode='" + str(self.mode) + "'"
        if self.line != None: xml_str+= " line='" + str(self.line) + "'"
        xml_str += "/>"
        if (action == "update" and self.isUpdated) or action == "new":
            self.isUpdated = False
            return xml_str
        else: return ''

    def layerTakeDOM(self, xml_dom):
        if xml_dom.hasAttribute("color"):
            r,g,b = self.r_h.rgb_tuple(xml_dom.getAttribute("color"))
            self.set_color(cmpColour(r,g,b))
        #backwards compatible with non-isometric map formated clients
        ratio = RATIO_DEFAULT
        if xml_dom.hasAttribute("ratio"): ratio = xml_dom.getAttribute("ratio")
        if xml_dom.hasAttribute("mode"):
            self.SetMode(int(xml_dom.getAttribute("mode")))
        if xml_dom.hasAttribute("size"):
            self.unit_size = int(xml_dom.getAttribute("size"))
            self.unit_size_y = self.unit_size
        if xml_dom.hasAttribute("snap"):
            if (xml_dom.getAttribute("snap") == 'True') or (xml_dom.getAttribute("snap") == "1"): self.snap = True
            else: self.snap = False
        if xml_dom.hasAttribute("line"):
            self.SetLine(int(xml_dom.getAttribute("line")))