Mercurial > mm7
view lib/swig/swigwin-2.0.11/Lib/std/std_vector.i @ 2564:f9bdfe26d03d
.
author | a.parshin |
---|---|
date | Wed, 20 May 2015 00:56:07 +0200 |
parents | b3009adc0e2f |
children |
line wrap: on
line source
// // std::vector // %include <std_container.i> // Vector %define %std_vector_methods(vector...) %std_sequence_methods(vector) void reserve(size_type n); size_type capacity() const; %enddef %define %std_vector_methods_val(vector...) %std_sequence_methods_val(vector) void reserve(size_type n); size_type capacity() const; %enddef // ------------------------------------------------------------------------ // std::vector // // The aim of all that follows would be to integrate std::vector with // as much as possible, namely, to allow the user to pass and // be returned tuples or lists. // const declarations are used to guess the intent of the function being // exported; therefore, the following rationale is applied: // // -- f(std::vector<T>), f(const std::vector<T>&): // the parameter being read-only, either a sequence or a // previously wrapped std::vector<T> can be passed. // -- f(std::vector<T>&), f(std::vector<T>*): // the parameter may be modified; therefore, only a wrapped std::vector // can be passed. // -- std::vector<T> f(), const std::vector<T>& f(): // the vector is returned by copy; therefore, a sequence of T:s // is returned which is most easily used in other functions // -- std::vector<T>& f(), std::vector<T>* f(): // the vector is returned by reference; therefore, a wrapped std::vector // is returned // -- const std::vector<T>* f(), f(const std::vector<T>*): // for consistency, they expect and return a plain vector pointer. // ------------------------------------------------------------------------ %{ #include <vector> %} // exported classes namespace std { template<class _Tp, class _Alloc = allocator< _Tp > > class vector { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Alloc allocator_type; %traits_swigtype(_Tp); %traits_enum(_Tp); %fragment(SWIG_Traits_frag(std::vector<_Tp, _Alloc >), "header", fragment=SWIG_Traits_frag(_Tp), fragment="StdVectorTraits") { namespace swig { template <> struct traits<std::vector<_Tp, _Alloc > > { typedef pointer_category category; static const char* type_name() { return "std::vector<" #_Tp "," #_Alloc " >"; } }; } } %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<_Tp, _Alloc >); #ifdef %swig_vector_methods // Add swig/language extra methods %swig_vector_methods(std::vector<_Tp, _Alloc >); #endif %std_vector_methods(vector); }; // *** // This specialization should disappear or get simplified when // a 'const SWIGTYPE*&' can be defined // *** template<class _Tp, class _Alloc > class vector<_Tp*, _Alloc > { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type reference; typedef value_type const_reference; typedef _Alloc allocator_type; %traits_swigtype(_Tp); %fragment(SWIG_Traits_frag(std::vector<_Tp*, _Alloc >), "header", fragment=SWIG_Traits_frag(_Tp), fragment="StdVectorTraits") { namespace swig { template <> struct traits<std::vector<_Tp*, _Alloc > > { typedef value_category category; static const char* type_name() { return "std::vector<" #_Tp " *," #_Alloc " >"; } }; } } %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<_Tp*, _Alloc >); #ifdef %swig_vector_methods_val // Add swig/language extra methods %swig_vector_methods_val(std::vector<_Tp*, _Alloc >); #endif %std_vector_methods_val(vector); }; // *** // const pointer specialization // *** template<class _Tp, class _Alloc > class vector<_Tp const *, _Alloc > { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp const * value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type reference; typedef value_type const_reference; typedef _Alloc allocator_type; %traits_swigtype(_Tp); %fragment(SWIG_Traits_frag(std::vector<_Tp const*, _Alloc >), "header", fragment=SWIG_Traits_frag(_Tp), fragment="StdVectorTraits") { namespace swig { template <> struct traits<std::vector<_Tp const*, _Alloc > > { typedef value_category category; static const char* type_name() { return "std::vector<" #_Tp " const*," #_Alloc " >"; } }; } } %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<_Tp const*, _Alloc >); #ifdef %swig_vector_methods_val // Add swig/language extra methods %swig_vector_methods_val(std::vector<_Tp const*, _Alloc >); #endif %std_vector_methods_val(vector); }; // *** // bool specialization // *** template<class _Alloc > class vector<bool,_Alloc > { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef bool value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type reference; typedef value_type const_reference; typedef _Alloc allocator_type; %traits_swigtype(bool); %fragment(SWIG_Traits_frag(std::vector<bool, _Alloc >), "header", fragment=SWIG_Traits_frag(bool), fragment="StdVectorTraits") { namespace swig { template <> struct traits<std::vector<bool, _Alloc > > { typedef value_category category; static const char* type_name() { return "std::vector<bool, _Alloc >"; } }; } } %typemap_traits_ptr(SWIG_TYPECHECK_VECTOR, std::vector<bool, _Alloc >); #ifdef %swig_vector_methods_val // Add swig/language extra methods %swig_vector_methods_val(std::vector<bool, _Alloc >); #endif %std_vector_methods_val(vector); #if defined(SWIG_STD_MODERN_STL) && !defined(SWIG_STD_NOMODERN_STL) void flip(); #endif }; }