Mercurial > mm7
comparison lib/zlib/deflate.c @ 0:9c0607679772
init
author | Ritor1 |
---|---|
date | Sat, 12 Jan 2013 09:45:18 +0600 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:9c0607679772 |
---|---|
1 /* deflate.c -- compress data using the deflation algorithm | |
2 * Copyright (C) 1995-1998 Jean-loup Gailly. | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 /* | |
7 * ALGORITHM | |
8 * | |
9 * The "deflation" process depends on being able to identify portions | |
10 * of the input text which are identical to earlier input (within a | |
11 * sliding window trailing behind the input currently being processed). | |
12 * | |
13 * The most straightforward technique turns out to be the fastest for | |
14 * most input files: try all possible matches and select the longest. | |
15 * The key feature of this algorithm is that insertions into the string | |
16 * dictionary are very simple and thus fast, and deletions are avoided | |
17 * completely. Insertions are performed at each input character, whereas | |
18 * string matches are performed only when the previous match ends. So it | |
19 * is preferable to spend more time in matches to allow very fast string | |
20 * insertions and avoid deletions. The matching algorithm for small | |
21 * strings is inspired from that of Rabin & Karp. A brute force approach | |
22 * is used to find longer strings when a small match has been found. | |
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | |
24 * (by Leonid Broukhis). | |
25 * A previous version of this file used a more sophisticated algorithm | |
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized | |
27 * time, but has a larger average cost, uses more memory and is patented. | |
28 * However the F&G algorithm may be faster for some highly redundant | |
29 * files if the parameter max_chain_length (described below) is too large. | |
30 * | |
31 * ACKNOWLEDGEMENTS | |
32 * | |
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | |
34 * I found it in 'freeze' written by Leonid Broukhis. | |
35 * Thanks to many people for bug reports and testing. | |
36 * | |
37 * REFERENCES | |
38 * | |
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | |
40 * Available in ftp://ds.internic.net/rfc/rfc1951.txt | |
41 * | |
42 * A description of the Rabin and Karp algorithm is given in the book | |
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | |
44 * | |
45 * Fiala,E.R., and Greene,D.H. | |
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | |
47 * | |
48 */ | |
49 | |
50 /* @(#) $Id$ */ | |
51 | |
52 #include "deflate.h" | |
53 | |
54 const char deflate_copyright[] = | |
55 " deflate 1.1.3 Copyright 1995-1998 Jean-loup Gailly "; | |
56 /* | |
57 If you use the zlib library in a product, an acknowledgment is welcome | |
58 in the documentation of your product. If for some reason you cannot | |
59 include such an acknowledgment, I would appreciate that you keep this | |
60 copyright string in the executable of your product. | |
61 */ | |
62 | |
63 /* =========================================================================== | |
64 * Function prototypes. | |
65 */ | |
66 typedef enum { | |
67 need_more, /* block not completed, need more input or more output */ | |
68 block_done, /* block flush performed */ | |
69 finish_started, /* finish started, need only more output at next deflate */ | |
70 finish_done /* finish done, accept no more input or output */ | |
71 } block_state; | |
72 | |
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); | |
74 /* Compression function. Returns the block state after the call. */ | |
75 | |
76 local void fill_window OF((deflate_state *s)); | |
77 local block_state deflate_stored OF((deflate_state *s, int flush)); | |
78 local block_state deflate_fast OF((deflate_state *s, int flush)); | |
79 local block_state deflate_slow OF((deflate_state *s, int flush)); | |
80 local void lm_init OF((deflate_state *s)); | |
81 local void putShortMSB OF((deflate_state *s, uInt b)); | |
82 local void flush_pending OF((z_streamp strm)); | |
83 local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); | |
84 #ifdef ASMV | |
85 void match_init OF((void)); /* asm code initialization */ | |
86 uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
87 #else | |
88 local uInt longest_match OF((deflate_state *s, IPos cur_match)); | |
89 #endif | |
90 | |
91 #ifdef DEBUG | |
92 local void check_match OF((deflate_state *s, IPos start, IPos match, | |
93 int length)); | |
94 #endif | |
95 | |
96 /* =========================================================================== | |
97 * Local data | |
98 */ | |
99 | |
100 #define NIL 0 | |
101 /* Tail of hash chains */ | |
102 | |
103 #ifndef TOO_FAR | |
104 # define TOO_FAR 4096 | |
105 #endif | |
106 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | |
107 | |
108 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) | |
109 /* Minimum amount of lookahead, except at the end of the input file. | |
110 * See deflate.c for comments about the MIN_MATCH+1. | |
111 */ | |
112 | |
113 /* Values for max_lazy_match, good_match and max_chain_length, depending on | |
114 * the desired pack level (0..9). The values given below have been tuned to | |
115 * exclude worst case performance for pathological files. Better values may be | |
116 * found for specific files. | |
117 */ | |
118 typedef struct config_s { | |
119 ush good_length; /* reduce lazy search above this match length */ | |
120 ush max_lazy; /* do not perform lazy search above this match length */ | |
121 ush nice_length; /* quit search above this match length */ | |
122 ush max_chain; | |
123 compress_func func; | |
124 } config; | |
125 | |
126 local const config configuration_table[10] = { | |
127 /* good lazy nice chain */ | |
128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
129 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ | |
130 /* 2 */ {4, 5, 16, 8, deflate_fast}, | |
131 /* 3 */ {4, 6, 32, 32, deflate_fast}, | |
132 | |
133 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ | |
134 /* 5 */ {8, 16, 32, 32, deflate_slow}, | |
135 /* 6 */ {8, 16, 128, 128, deflate_slow}, | |
136 /* 7 */ {8, 32, 128, 256, deflate_slow}, | |
137 /* 8 */ {32, 128, 258, 1024, deflate_slow}, | |
138 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ | |
139 | |
140 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | |
141 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | |
142 * meaning. | |
143 */ | |
144 | |
145 #define EQUAL 0 | |
146 /* result of memcmp for equal strings */ | |
147 | |
148 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ | |
149 | |
150 /* =========================================================================== | |
151 * Update a hash value with the given input byte | |
152 * IN assertion: all calls to to UPDATE_HASH are made with consecutive | |
153 * input characters, so that a running hash key can be computed from the | |
154 * previous key instead of complete recalculation each time. | |
155 */ | |
156 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) | |
157 | |
158 | |
159 /* =========================================================================== | |
160 * Insert string str in the dictionary and set match_head to the previous head | |
161 * of the hash chain (the most recent string with same hash key). Return | |
162 * the previous length of the hash chain. | |
163 * If this file is compiled with -DFASTEST, the compression level is forced | |
164 * to 1, and no hash chains are maintained. | |
165 * IN assertion: all calls to to INSERT_STRING are made with consecutive | |
166 * input characters and the first MIN_MATCH bytes of str are valid | |
167 * (except for the last MIN_MATCH-1 bytes of the input file). | |
168 */ | |
169 #ifdef FASTEST | |
170 #define INSERT_STRING(s, str, match_head) \ | |
171 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
172 match_head = s->head[s->ins_h], \ | |
173 s->head[s->ins_h] = (Pos)(str)) | |
174 #else | |
175 #define INSERT_STRING(s, str, match_head) \ | |
176 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
177 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ | |
178 s->head[s->ins_h] = (Pos)(str)) | |
179 #endif | |
180 | |
181 /* =========================================================================== | |
182 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | |
183 * prev[] will be initialized on the fly. | |
184 */ | |
185 #define CLEAR_HASH(s) \ | |
186 s->head[s->hash_size-1] = NIL; \ | |
187 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | |
188 | |
189 /* ========================================================================= */ | |
190 int ZEXPORT deflateInit_(strm, level, version, stream_size) | |
191 z_streamp strm; | |
192 int level; | |
193 const char *version; | |
194 int stream_size; | |
195 { | |
196 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, | |
197 Z_DEFAULT_STRATEGY, version, stream_size); | |
198 /* To do: ignore strm->next_in if we use it as window */ | |
199 } | |
200 | |
201 /* ========================================================================= */ | |
202 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, | |
203 version, stream_size) | |
204 z_streamp strm; | |
205 int level; | |
206 int method; | |
207 int windowBits; | |
208 int memLevel; | |
209 int strategy; | |
210 const char *version; | |
211 int stream_size; | |
212 { | |
213 deflate_state *s; | |
214 int noheader = 0; | |
215 static const char* my_version = ZLIB_VERSION; | |
216 | |
217 ushf *overlay; | |
218 /* We overlay pending_buf and d_buf+l_buf. This works since the average | |
219 * output size for (length,distance) codes is <= 24 bits. | |
220 */ | |
221 | |
222 if (version == Z_NULL || version[0] != my_version[0] || | |
223 stream_size != sizeof(z_stream)) { | |
224 return Z_VERSION_ERROR; | |
225 } | |
226 if (strm == Z_NULL) return Z_STREAM_ERROR; | |
227 | |
228 strm->msg = Z_NULL; | |
229 if (strm->zalloc == Z_NULL) { | |
230 strm->zalloc = zcalloc; | |
231 strm->opaque = (voidpf)0; | |
232 } | |
233 if (strm->zfree == Z_NULL) strm->zfree = zcfree; | |
234 | |
235 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
236 #ifdef FASTEST | |
237 level = 1; | |
238 #endif | |
239 | |
240 if (windowBits < 0) { /* undocumented feature: suppress zlib header */ | |
241 noheader = 1; | |
242 windowBits = -windowBits; | |
243 } | |
244 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | |
245 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |
246 strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | |
247 return Z_STREAM_ERROR; | |
248 } | |
249 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); | |
250 if (s == Z_NULL) return Z_MEM_ERROR; | |
251 strm->state = (struct internal_state FAR *)s; | |
252 s->strm = strm; | |
253 | |
254 s->noheader = noheader; | |
255 s->w_bits = windowBits; | |
256 s->w_size = 1 << s->w_bits; | |
257 s->w_mask = s->w_size - 1; | |
258 | |
259 s->hash_bits = memLevel + 7; | |
260 s->hash_size = 1 << s->hash_bits; | |
261 s->hash_mask = s->hash_size - 1; | |
262 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | |
263 | |
264 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); | |
265 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); | |
266 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); | |
267 | |
268 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |
269 | |
270 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); | |
271 s->pending_buf = (uchf *) overlay; | |
272 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | |
273 | |
274 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || | |
275 s->pending_buf == Z_NULL) { | |
276 strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); | |
277 deflateEnd (strm); | |
278 return Z_MEM_ERROR; | |
279 } | |
280 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | |
281 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | |
282 | |
283 s->level = level; | |
284 s->strategy = strategy; | |
285 s->method = (Byte)method; | |
286 | |
287 return deflateReset(strm); | |
288 } | |
289 | |
290 /* ========================================================================= */ | |
291 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) | |
292 z_streamp strm; | |
293 const Bytef *dictionary; | |
294 uInt dictLength; | |
295 { | |
296 deflate_state *s; | |
297 uInt length = dictLength; | |
298 uInt n; | |
299 IPos hash_head = 0; | |
300 | |
301 if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || | |
302 strm->state->status != INIT_STATE) return Z_STREAM_ERROR; | |
303 | |
304 s = strm->state; | |
305 strm->adler = adler32(strm->adler, dictionary, dictLength); | |
306 | |
307 if (length < MIN_MATCH) return Z_OK; | |
308 if (length > MAX_DIST(s)) { | |
309 length = MAX_DIST(s); | |
310 #ifndef USE_DICT_HEAD | |
311 dictionary += dictLength - length; /* use the tail of the dictionary */ | |
312 #endif | |
313 } | |
314 zmemcpy(s->window, dictionary, length); | |
315 s->strstart = length; | |
316 s->block_start = (long)length; | |
317 | |
318 /* Insert all strings in the hash table (except for the last two bytes). | |
319 * s->lookahead stays null, so s->ins_h will be recomputed at the next | |
320 * call of fill_window. | |
321 */ | |
322 s->ins_h = s->window[0]; | |
323 UPDATE_HASH(s, s->ins_h, s->window[1]); | |
324 for (n = 0; n <= length - MIN_MATCH; n++) { | |
325 INSERT_STRING(s, n, hash_head); | |
326 } | |
327 if (hash_head) hash_head = 0; /* to make compiler happy */ | |
328 return Z_OK; | |
329 } | |
330 | |
331 /* ========================================================================= */ | |
332 int ZEXPORT deflateReset (strm) | |
333 z_streamp strm; | |
334 { | |
335 deflate_state *s; | |
336 | |
337 if (strm == Z_NULL || strm->state == Z_NULL || | |
338 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; | |
339 | |
340 strm->total_in = strm->total_out = 0; | |
341 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ | |
342 strm->data_type = Z_UNKNOWN; | |
343 | |
344 s = (deflate_state *)strm->state; | |
345 s->pending = 0; | |
346 s->pending_out = s->pending_buf; | |
347 | |
348 if (s->noheader < 0) { | |
349 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ | |
350 } | |
351 s->status = s->noheader ? BUSY_STATE : INIT_STATE; | |
352 strm->adler = 1; | |
353 s->last_flush = Z_NO_FLUSH; | |
354 | |
355 _tr_init(s); | |
356 lm_init(s); | |
357 | |
358 return Z_OK; | |
359 } | |
360 | |
361 /* ========================================================================= */ | |
362 int ZEXPORT deflateParams(strm, level, strategy) | |
363 z_streamp strm; | |
364 int level; | |
365 int strategy; | |
366 { | |
367 deflate_state *s; | |
368 compress_func func; | |
369 int err = Z_OK; | |
370 | |
371 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
372 s = strm->state; | |
373 | |
374 if (level == Z_DEFAULT_COMPRESSION) { | |
375 level = 6; | |
376 } | |
377 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | |
378 return Z_STREAM_ERROR; | |
379 } | |
380 func = configuration_table[s->level].func; | |
381 | |
382 if (func != configuration_table[level].func && strm->total_in != 0) { | |
383 /* Flush the last buffer: */ | |
384 err = deflate(strm, Z_PARTIAL_FLUSH); | |
385 } | |
386 if (s->level != level) { | |
387 s->level = level; | |
388 s->max_lazy_match = configuration_table[level].max_lazy; | |
389 s->good_match = configuration_table[level].good_length; | |
390 s->nice_match = configuration_table[level].nice_length; | |
391 s->max_chain_length = configuration_table[level].max_chain; | |
392 } | |
393 s->strategy = strategy; | |
394 return err; | |
395 } | |
396 | |
397 /* ========================================================================= | |
398 * Put a short in the pending buffer. The 16-bit value is put in MSB order. | |
399 * IN assertion: the stream state is correct and there is enough room in | |
400 * pending_buf. | |
401 */ | |
402 local void putShortMSB (s, b) | |
403 deflate_state *s; | |
404 uInt b; | |
405 { | |
406 put_byte(s, (Byte)(b >> 8)); | |
407 put_byte(s, (Byte)(b & 0xff)); | |
408 } | |
409 | |
410 /* ========================================================================= | |
411 * Flush as much pending output as possible. All deflate() output goes | |
412 * through this function so some applications may wish to modify it | |
413 * to avoid allocating a large strm->next_out buffer and copying into it. | |
414 * (See also read_buf()). | |
415 */ | |
416 local void flush_pending(strm) | |
417 z_streamp strm; | |
418 { | |
419 unsigned len = strm->state->pending; | |
420 | |
421 if (len > strm->avail_out) len = strm->avail_out; | |
422 if (len == 0) return; | |
423 | |
424 zmemcpy(strm->next_out, strm->state->pending_out, len); | |
425 strm->next_out += len; | |
426 strm->state->pending_out += len; | |
427 strm->total_out += len; | |
428 strm->avail_out -= len; | |
429 strm->state->pending -= len; | |
430 if (strm->state->pending == 0) { | |
431 strm->state->pending_out = strm->state->pending_buf; | |
432 } | |
433 } | |
434 | |
435 /* ========================================================================= */ | |
436 int ZEXPORT deflate (strm, flush) | |
437 z_streamp strm; | |
438 int flush; | |
439 { | |
440 int old_flush; /* value of flush param for previous deflate call */ | |
441 deflate_state *s; | |
442 | |
443 if (strm == Z_NULL || strm->state == Z_NULL || | |
444 flush > Z_FINISH || flush < 0) { | |
445 return Z_STREAM_ERROR; | |
446 } | |
447 s = strm->state; | |
448 | |
449 if (strm->next_out == Z_NULL || | |
450 (strm->next_in == Z_NULL && strm->avail_in != 0) || | |
451 (s->status == FINISH_STATE && flush != Z_FINISH)) { | |
452 ERR_RETURN(strm, Z_STREAM_ERROR); | |
453 } | |
454 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); | |
455 | |
456 s->strm = strm; /* just in case */ | |
457 old_flush = s->last_flush; | |
458 s->last_flush = flush; | |
459 | |
460 /* Write the zlib header */ | |
461 if (s->status == INIT_STATE) { | |
462 | |
463 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | |
464 uInt level_flags = (s->level-1) >> 1; | |
465 | |
466 if (level_flags > 3) level_flags = 3; | |
467 header |= (level_flags << 6); | |
468 if (s->strstart != 0) header |= PRESET_DICT; | |
469 header += 31 - (header % 31); | |
470 | |
471 s->status = BUSY_STATE; | |
472 putShortMSB(s, header); | |
473 | |
474 /* Save the adler32 of the preset dictionary: */ | |
475 if (s->strstart != 0) { | |
476 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
477 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
478 } | |
479 strm->adler = 1L; | |
480 } | |
481 | |
482 /* Flush as much pending output as possible */ | |
483 if (s->pending != 0) { | |
484 flush_pending(strm); | |
485 if (strm->avail_out == 0) { | |
486 /* Since avail_out is 0, deflate will be called again with | |
487 * more output space, but possibly with both pending and | |
488 * avail_in equal to zero. There won't be anything to do, | |
489 * but this is not an error situation so make sure we | |
490 * return OK instead of BUF_ERROR at next call of deflate: | |
491 */ | |
492 s->last_flush = -1; | |
493 return Z_OK; | |
494 } | |
495 | |
496 /* Make sure there is something to do and avoid duplicate consecutive | |
497 * flushes. For repeated and useless calls with Z_FINISH, we keep | |
498 * returning Z_STREAM_END instead of Z_BUFF_ERROR. | |
499 */ | |
500 } else if (strm->avail_in == 0 && flush <= old_flush && | |
501 flush != Z_FINISH) { | |
502 ERR_RETURN(strm, Z_BUF_ERROR); | |
503 } | |
504 | |
505 /* User must not provide more input after the first FINISH: */ | |
506 if (s->status == FINISH_STATE && strm->avail_in != 0) { | |
507 ERR_RETURN(strm, Z_BUF_ERROR); | |
508 } | |
509 | |
510 /* Start a new block or continue the current one. | |
511 */ | |
512 if (strm->avail_in != 0 || s->lookahead != 0 || | |
513 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | |
514 block_state bstate; | |
515 | |
516 bstate = (*(configuration_table[s->level].func))(s, flush); | |
517 | |
518 if (bstate == finish_started || bstate == finish_done) { | |
519 s->status = FINISH_STATE; | |
520 } | |
521 if (bstate == need_more || bstate == finish_started) { | |
522 if (strm->avail_out == 0) { | |
523 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | |
524 } | |
525 return Z_OK; | |
526 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
527 * of deflate should use the same flush parameter to make sure | |
528 * that the flush is complete. So we don't have to output an | |
529 * empty block here, this will be done at next call. This also | |
530 * ensures that for a very small output buffer, we emit at most | |
531 * one empty block. | |
532 */ | |
533 } | |
534 if (bstate == block_done) { | |
535 if (flush == Z_PARTIAL_FLUSH) { | |
536 _tr_align(s); | |
537 } else { /* FULL_FLUSH or SYNC_FLUSH */ | |
538 _tr_stored_block(s, (char*)0, 0L, 0); | |
539 /* For a full flush, this empty block will be recognized | |
540 * as a special marker by inflate_sync(). | |
541 */ | |
542 if (flush == Z_FULL_FLUSH) { | |
543 CLEAR_HASH(s); /* forget history */ | |
544 } | |
545 } | |
546 flush_pending(strm); | |
547 if (strm->avail_out == 0) { | |
548 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |
549 return Z_OK; | |
550 } | |
551 } | |
552 } | |
553 Assert(strm->avail_out > 0, "bug2"); | |
554 | |
555 if (flush != Z_FINISH) return Z_OK; | |
556 if (s->noheader) return Z_STREAM_END; | |
557 | |
558 /* Write the zlib trailer (adler32) */ | |
559 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
560 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
561 flush_pending(strm); | |
562 /* If avail_out is zero, the application will call deflate again | |
563 * to flush the rest. | |
564 */ | |
565 s->noheader = -1; /* write the trailer only once! */ | |
566 return s->pending != 0 ? Z_OK : Z_STREAM_END; | |
567 } | |
568 | |
569 /* ========================================================================= */ | |
570 int ZEXPORT deflateEnd (strm) | |
571 z_streamp strm; | |
572 { | |
573 int status; | |
574 | |
575 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; | |
576 | |
577 status = strm->state->status; | |
578 if (status != INIT_STATE && status != BUSY_STATE && | |
579 status != FINISH_STATE) { | |
580 return Z_STREAM_ERROR; | |
581 } | |
582 | |
583 /* Deallocate in reverse order of allocations: */ | |
584 TRY_FREE(strm, strm->state->pending_buf); | |
585 TRY_FREE(strm, strm->state->head); | |
586 TRY_FREE(strm, strm->state->prev); | |
587 TRY_FREE(strm, strm->state->window); | |
588 | |
589 ZFREE(strm, strm->state); | |
590 strm->state = Z_NULL; | |
591 | |
592 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
593 } | |
594 | |
595 /* ========================================================================= | |
596 * Copy the source state to the destination state. | |
597 * To simplify the source, this is not supported for 16-bit MSDOS (which | |
598 * doesn't have enough memory anyway to duplicate compression states). | |
599 */ | |
600 int ZEXPORT deflateCopy (dest, source) | |
601 z_streamp dest; | |
602 z_streamp source; | |
603 { | |
604 #ifdef MAXSEG_64K | |
605 return Z_STREAM_ERROR; | |
606 #else | |
607 deflate_state *ds; | |
608 deflate_state *ss; | |
609 ushf *overlay; | |
610 | |
611 | |
612 if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { | |
613 return Z_STREAM_ERROR; | |
614 } | |
615 | |
616 ss = source->state; | |
617 | |
618 *dest = *source; | |
619 | |
620 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); | |
621 if (ds == Z_NULL) return Z_MEM_ERROR; | |
622 dest->state = (struct internal_state FAR *) ds; | |
623 *ds = *ss; | |
624 ds->strm = dest; | |
625 | |
626 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); | |
627 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); | |
628 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); | |
629 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); | |
630 ds->pending_buf = (uchf *) overlay; | |
631 | |
632 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || | |
633 ds->pending_buf == Z_NULL) { | |
634 deflateEnd (dest); | |
635 return Z_MEM_ERROR; | |
636 } | |
637 /* following zmemcpy do not work for 16-bit MSDOS */ | |
638 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | |
639 zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); | |
640 zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); | |
641 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); | |
642 | |
643 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | |
644 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); | |
645 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; | |
646 | |
647 ds->l_desc.dyn_tree = ds->dyn_ltree; | |
648 ds->d_desc.dyn_tree = ds->dyn_dtree; | |
649 ds->bl_desc.dyn_tree = ds->bl_tree; | |
650 | |
651 return Z_OK; | |
652 #endif | |
653 } | |
654 | |
655 /* =========================================================================== | |
656 * Read a new buffer from the current input stream, update the adler32 | |
657 * and total number of bytes read. All deflate() input goes through | |
658 * this function so some applications may wish to modify it to avoid | |
659 * allocating a large strm->next_in buffer and copying from it. | |
660 * (See also flush_pending()). | |
661 */ | |
662 local int read_buf(strm, buf, size) | |
663 z_streamp strm; | |
664 Bytef *buf; | |
665 unsigned size; | |
666 { | |
667 unsigned len = strm->avail_in; | |
668 | |
669 if (len > size) len = size; | |
670 if (len == 0) return 0; | |
671 | |
672 strm->avail_in -= len; | |
673 | |
674 if (!strm->state->noheader) { | |
675 strm->adler = adler32(strm->adler, strm->next_in, len); | |
676 } | |
677 zmemcpy(buf, strm->next_in, len); | |
678 strm->next_in += len; | |
679 strm->total_in += len; | |
680 | |
681 return (int)len; | |
682 } | |
683 | |
684 /* =========================================================================== | |
685 * Initialize the "longest match" routines for a new zlib stream | |
686 */ | |
687 local void lm_init (s) | |
688 deflate_state *s; | |
689 { | |
690 s->window_size = (ulg)2L*s->w_size; | |
691 | |
692 CLEAR_HASH(s); | |
693 | |
694 /* Set the default configuration parameters: | |
695 */ | |
696 s->max_lazy_match = configuration_table[s->level].max_lazy; | |
697 s->good_match = configuration_table[s->level].good_length; | |
698 s->nice_match = configuration_table[s->level].nice_length; | |
699 s->max_chain_length = configuration_table[s->level].max_chain; | |
700 | |
701 s->strstart = 0; | |
702 s->block_start = 0L; | |
703 s->lookahead = 0; | |
704 s->match_length = s->prev_length = MIN_MATCH-1; | |
705 s->match_available = 0; | |
706 s->ins_h = 0; | |
707 #ifdef ASMV | |
708 match_init(); /* initialize the asm code */ | |
709 #endif | |
710 } | |
711 | |
712 /* =========================================================================== | |
713 * Set match_start to the longest match starting at the given string and | |
714 * return its length. Matches shorter or equal to prev_length are discarded, | |
715 * in which case the result is equal to prev_length and match_start is | |
716 * garbage. | |
717 * IN assertions: cur_match is the head of the hash chain for the current | |
718 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |
719 * OUT assertion: the match length is not greater than s->lookahead. | |
720 */ | |
721 #ifndef ASMV | |
722 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or | |
723 * match.S. The code will be functionally equivalent. | |
724 */ | |
725 #ifndef FASTEST | |
726 local uInt longest_match(s, cur_match) | |
727 deflate_state *s; | |
728 IPos cur_match; /* current match */ | |
729 { | |
730 unsigned chain_length = s->max_chain_length;/* max hash chain length */ | |
731 register Bytef *scan = s->window + s->strstart; /* current string */ | |
732 register Bytef *match; /* matched string */ | |
733 register int len; /* length of current match */ | |
734 int best_len = s->prev_length; /* best match length so far */ | |
735 int nice_match = s->nice_match; /* stop if match long enough */ | |
736 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | |
737 s->strstart - (IPos)MAX_DIST(s) : NIL; | |
738 /* Stop when cur_match becomes <= limit. To simplify the code, | |
739 * we prevent matches with the string of window index 0. | |
740 */ | |
741 Posf *prev = s->prev; | |
742 uInt wmask = s->w_mask; | |
743 | |
744 #ifdef UNALIGNED_OK | |
745 /* Compare two bytes at a time. Note: this is not always beneficial. | |
746 * Try with and without -DUNALIGNED_OK to check. | |
747 */ | |
748 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; | |
749 register ush scan_start = *(ushf*)scan; | |
750 register ush scan_end = *(ushf*)(scan+best_len-1); | |
751 #else | |
752 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
753 register Byte scan_end1 = scan[best_len-1]; | |
754 register Byte scan_end = scan[best_len]; | |
755 #endif | |
756 | |
757 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
758 * It is easy to get rid of this optimization if necessary. | |
759 */ | |
760 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
761 | |
762 /* Do not waste too much time if we already have a good match: */ | |
763 if (s->prev_length >= s->good_match) { | |
764 chain_length >>= 2; | |
765 } | |
766 /* Do not look for matches beyond the end of the input. This is necessary | |
767 * to make deflate deterministic. | |
768 */ | |
769 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; | |
770 | |
771 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
772 | |
773 do { | |
774 Assert(cur_match < s->strstart, "no future"); | |
775 match = s->window + cur_match; | |
776 | |
777 /* Skip to next match if the match length cannot increase | |
778 * or if the match length is less than 2: | |
779 */ | |
780 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | |
781 /* This code assumes sizeof(unsigned short) == 2. Do not use | |
782 * UNALIGNED_OK if your compiler uses a different size. | |
783 */ | |
784 if (*(ushf*)(match+best_len-1) != scan_end || | |
785 *(ushf*)match != scan_start) continue; | |
786 | |
787 /* It is not necessary to compare scan[2] and match[2] since they are | |
788 * always equal when the other bytes match, given that the hash keys | |
789 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | |
790 * strstart+3, +5, ... up to strstart+257. We check for insufficient | |
791 * lookahead only every 4th comparison; the 128th check will be made | |
792 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | |
793 * necessary to put more guard bytes at the end of the window, or | |
794 * to check more often for insufficient lookahead. | |
795 */ | |
796 Assert(scan[2] == match[2], "scan[2]?"); | |
797 scan++, match++; | |
798 do { | |
799 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
800 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
801 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
802 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && | |
803 scan < strend); | |
804 /* The funny "do {}" generates better code on most compilers */ | |
805 | |
806 /* Here, scan <= window+strstart+257 */ | |
807 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
808 if (*scan == *match) scan++; | |
809 | |
810 len = (MAX_MATCH - 1) - (int)(strend-scan); | |
811 scan = strend - (MAX_MATCH-1); | |
812 | |
813 #else /* UNALIGNED_OK */ | |
814 | |
815 if (match[best_len] != scan_end || | |
816 match[best_len-1] != scan_end1 || | |
817 *match != *scan || | |
818 *++match != scan[1]) continue; | |
819 | |
820 /* The check at best_len-1 can be removed because it will be made | |
821 * again later. (This heuristic is not always a win.) | |
822 * It is not necessary to compare scan[2] and match[2] since they | |
823 * are always equal when the other bytes match, given that | |
824 * the hash keys are equal and that HASH_BITS >= 8. | |
825 */ | |
826 scan += 2, match++; | |
827 Assert(*scan == *match, "match[2]?"); | |
828 | |
829 /* We check for insufficient lookahead only every 8th comparison; | |
830 * the 256th check will be made at strstart+258. | |
831 */ | |
832 do { | |
833 } while (*++scan == *++match && *++scan == *++match && | |
834 *++scan == *++match && *++scan == *++match && | |
835 *++scan == *++match && *++scan == *++match && | |
836 *++scan == *++match && *++scan == *++match && | |
837 scan < strend); | |
838 | |
839 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
840 | |
841 len = MAX_MATCH - (int)(strend - scan); | |
842 scan = strend - MAX_MATCH; | |
843 | |
844 #endif /* UNALIGNED_OK */ | |
845 | |
846 if (len > best_len) { | |
847 s->match_start = cur_match; | |
848 best_len = len; | |
849 if (len >= nice_match) break; | |
850 #ifdef UNALIGNED_OK | |
851 scan_end = *(ushf*)(scan+best_len-1); | |
852 #else | |
853 scan_end1 = scan[best_len-1]; | |
854 scan_end = scan[best_len]; | |
855 #endif | |
856 } | |
857 } while ((cur_match = prev[cur_match & wmask]) > limit | |
858 && --chain_length != 0); | |
859 | |
860 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; | |
861 return s->lookahead; | |
862 } | |
863 | |
864 #else /* FASTEST */ | |
865 /* --------------------------------------------------------------------------- | |
866 * Optimized version for level == 1 only | |
867 */ | |
868 local uInt longest_match(s, cur_match) | |
869 deflate_state *s; | |
870 IPos cur_match; /* current match */ | |
871 { | |
872 register Bytef *scan = s->window + s->strstart; /* current string */ | |
873 register Bytef *match; /* matched string */ | |
874 register int len; /* length of current match */ | |
875 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
876 | |
877 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
878 * It is easy to get rid of this optimization if necessary. | |
879 */ | |
880 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
881 | |
882 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | |
883 | |
884 Assert(cur_match < s->strstart, "no future"); | |
885 | |
886 match = s->window + cur_match; | |
887 | |
888 /* Return failure if the match length is less than 2: | |
889 */ | |
890 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; | |
891 | |
892 /* The check at best_len-1 can be removed because it will be made | |
893 * again later. (This heuristic is not always a win.) | |
894 * It is not necessary to compare scan[2] and match[2] since they | |
895 * are always equal when the other bytes match, given that | |
896 * the hash keys are equal and that HASH_BITS >= 8. | |
897 */ | |
898 scan += 2, match += 2; | |
899 Assert(*scan == *match, "match[2]?"); | |
900 | |
901 /* We check for insufficient lookahead only every 8th comparison; | |
902 * the 256th check will be made at strstart+258. | |
903 */ | |
904 do { | |
905 } while (*++scan == *++match && *++scan == *++match && | |
906 *++scan == *++match && *++scan == *++match && | |
907 *++scan == *++match && *++scan == *++match && | |
908 *++scan == *++match && *++scan == *++match && | |
909 scan < strend); | |
910 | |
911 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | |
912 | |
913 len = MAX_MATCH - (int)(strend - scan); | |
914 | |
915 if (len < MIN_MATCH) return MIN_MATCH - 1; | |
916 | |
917 s->match_start = cur_match; | |
918 return len <= s->lookahead ? len : s->lookahead; | |
919 } | |
920 #endif /* FASTEST */ | |
921 #endif /* ASMV */ | |
922 | |
923 #ifdef DEBUG | |
924 /* =========================================================================== | |
925 * Check that the match at match_start is indeed a match. | |
926 */ | |
927 local void check_match(s, start, match, length) | |
928 deflate_state *s; | |
929 IPos start, match; | |
930 int length; | |
931 { | |
932 /* check that the match is indeed a match */ | |
933 if (zmemcmp(s->window + match, | |
934 s->window + start, length) != EQUAL) { | |
935 fprintf(stderr, " start %u, match %u, length %d\n", | |
936 start, match, length); | |
937 do { | |
938 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | |
939 } while (--length != 0); | |
940 z_error("invalid match"); | |
941 } | |
942 if (z_verbose > 1) { | |
943 fprintf(stderr,"\\[%d,%d]", start-match, length); | |
944 do { putc(s->window[start++], stderr); } while (--length != 0); | |
945 } | |
946 } | |
947 #else | |
948 # define check_match(s, start, match, length) | |
949 #endif | |
950 | |
951 /* =========================================================================== | |
952 * Fill the window when the lookahead becomes insufficient. | |
953 * Updates strstart and lookahead. | |
954 * | |
955 * IN assertion: lookahead < MIN_LOOKAHEAD | |
956 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
957 * At least one byte has been read, or avail_in == 0; reads are | |
958 * performed for at least two bytes (required for the zip translate_eol | |
959 * option -- not supported here). | |
960 */ | |
961 local void fill_window(s) | |
962 deflate_state *s; | |
963 { | |
964 register unsigned n, m; | |
965 register Posf *p; | |
966 unsigned more; /* Amount of free space at the end of the window. */ | |
967 uInt wsize = s->w_size; | |
968 | |
969 do { | |
970 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | |
971 | |
972 /* Deal with !@#$% 64K limit: */ | |
973 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |
974 more = wsize; | |
975 | |
976 } else if (more == (unsigned)(-1)) { | |
977 /* Very unlikely, but possible on 16 bit machine if strstart == 0 | |
978 * and lookahead == 1 (input done one byte at time) | |
979 */ | |
980 more--; | |
981 | |
982 /* If the window is almost full and there is insufficient lookahead, | |
983 * move the upper half to the lower one to make room in the upper half. | |
984 */ | |
985 } else if (s->strstart >= wsize+MAX_DIST(s)) { | |
986 | |
987 zmemcpy(s->window, s->window+wsize, (unsigned)wsize); | |
988 s->match_start -= wsize; | |
989 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ | |
990 s->block_start -= (long) wsize; | |
991 | |
992 /* Slide the hash table (could be avoided with 32 bit values | |
993 at the expense of memory usage). We slide even when level == 0 | |
994 to keep the hash table consistent if we switch back to level > 0 | |
995 later. (Using level 0 permanently is not an optimal usage of | |
996 zlib, so we don't care about this pathological case.) | |
997 */ | |
998 n = s->hash_size; | |
999 p = &s->head[n]; | |
1000 do { | |
1001 m = *--p; | |
1002 *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1003 } while (--n); | |
1004 | |
1005 n = wsize; | |
1006 #ifndef FASTEST | |
1007 p = &s->prev[n]; | |
1008 do { | |
1009 m = *--p; | |
1010 *p = (Pos)(m >= wsize ? m-wsize : NIL); | |
1011 /* If n is not on any hash chain, prev[n] is garbage but | |
1012 * its value will never be used. | |
1013 */ | |
1014 } while (--n); | |
1015 #endif | |
1016 more += wsize; | |
1017 } | |
1018 if (s->strm->avail_in == 0) return; | |
1019 | |
1020 /* If there was no sliding: | |
1021 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
1022 * more == window_size - lookahead - strstart | |
1023 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
1024 * => more >= window_size - 2*WSIZE + 2 | |
1025 * In the BIG_MEM or MMAP case (not yet supported), | |
1026 * window_size == input_size + MIN_LOOKAHEAD && | |
1027 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
1028 * Otherwise, window_size == 2*WSIZE so more >= 2. | |
1029 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
1030 */ | |
1031 Assert(more >= 2, "more < 2"); | |
1032 | |
1033 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | |
1034 s->lookahead += n; | |
1035 | |
1036 /* Initialize the hash value now that we have some input: */ | |
1037 if (s->lookahead >= MIN_MATCH) { | |
1038 s->ins_h = s->window[s->strstart]; | |
1039 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | |
1040 #if MIN_MATCH != 3 | |
1041 Call UPDATE_HASH() MIN_MATCH-3 more times | |
1042 #endif | |
1043 } | |
1044 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
1045 * but this is not important since only literal bytes will be emitted. | |
1046 */ | |
1047 | |
1048 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | |
1049 } | |
1050 | |
1051 /* =========================================================================== | |
1052 * Flush the current block, with given end-of-file flag. | |
1053 * IN assertion: strstart is set to the end of the current match. | |
1054 */ | |
1055 #define FLUSH_BLOCK_ONLY(s, eof) { \ | |
1056 _tr_flush_block(s, (s->block_start >= 0L ? \ | |
1057 (charf *)&s->window[(unsigned)s->block_start] : \ | |
1058 (charf *)Z_NULL), \ | |
1059 (ulg)((long)s->strstart - s->block_start), \ | |
1060 (eof)); \ | |
1061 s->block_start = s->strstart; \ | |
1062 flush_pending(s->strm); \ | |
1063 Tracev((stderr,"[FLUSH]")); \ | |
1064 } | |
1065 | |
1066 /* Same but force premature exit if necessary. */ | |
1067 #define FLUSH_BLOCK(s, eof) { \ | |
1068 FLUSH_BLOCK_ONLY(s, eof); \ | |
1069 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ | |
1070 } | |
1071 | |
1072 /* =========================================================================== | |
1073 * Copy without compression as much as possible from the input stream, return | |
1074 * the current block state. | |
1075 * This function does not insert new strings in the dictionary since | |
1076 * uncompressible data is probably not useful. This function is used | |
1077 * only for the level=0 compression option. | |
1078 * NOTE: this function should be optimized to avoid extra copying from | |
1079 * window to pending_buf. | |
1080 */ | |
1081 local block_state deflate_stored(s, flush) | |
1082 deflate_state *s; | |
1083 int flush; | |
1084 { | |
1085 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | |
1086 * to pending_buf_size, and each stored block has a 5 byte header: | |
1087 */ | |
1088 ulg max_block_size = 0xffff; | |
1089 ulg max_start; | |
1090 | |
1091 if (max_block_size > s->pending_buf_size - 5) { | |
1092 max_block_size = s->pending_buf_size - 5; | |
1093 } | |
1094 | |
1095 /* Copy as much as possible from input to output: */ | |
1096 for (;;) { | |
1097 /* Fill the window as much as possible: */ | |
1098 if (s->lookahead <= 1) { | |
1099 | |
1100 Assert(s->strstart < s->w_size+MAX_DIST(s) || | |
1101 s->block_start >= (long)s->w_size, "slide too late"); | |
1102 | |
1103 fill_window(s); | |
1104 if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; | |
1105 | |
1106 if (s->lookahead == 0) break; /* flush the current block */ | |
1107 } | |
1108 Assert(s->block_start >= 0L, "block gone"); | |
1109 | |
1110 s->strstart += s->lookahead; | |
1111 s->lookahead = 0; | |
1112 | |
1113 /* Emit a stored block if pending_buf will be full: */ | |
1114 max_start = s->block_start + max_block_size; | |
1115 if (s->strstart == 0 || (ulg)s->strstart >= max_start) { | |
1116 /* strstart == 0 is possible when wraparound on 16-bit machine */ | |
1117 s->lookahead = (uInt)(s->strstart - max_start); | |
1118 s->strstart = (uInt)max_start; | |
1119 FLUSH_BLOCK(s, 0); | |
1120 } | |
1121 /* Flush if we may have to slide, otherwise block_start may become | |
1122 * negative and the data will be gone: | |
1123 */ | |
1124 if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { | |
1125 FLUSH_BLOCK(s, 0); | |
1126 } | |
1127 } | |
1128 FLUSH_BLOCK(s, flush == Z_FINISH); | |
1129 return flush == Z_FINISH ? finish_done : block_done; | |
1130 } | |
1131 | |
1132 /* =========================================================================== | |
1133 * Compress as much as possible from the input stream, return the current | |
1134 * block state. | |
1135 * This function does not perform lazy evaluation of matches and inserts | |
1136 * new strings in the dictionary only for unmatched strings or for short | |
1137 * matches. It is used only for the fast compression options. | |
1138 */ | |
1139 local block_state deflate_fast(s, flush) | |
1140 deflate_state *s; | |
1141 int flush; | |
1142 { | |
1143 IPos hash_head = NIL; /* head of the hash chain */ | |
1144 int bflush; /* set if current block must be flushed */ | |
1145 | |
1146 for (;;) { | |
1147 /* Make sure that we always have enough lookahead, except | |
1148 * at the end of the input file. We need MAX_MATCH bytes | |
1149 * for the next match, plus MIN_MATCH bytes to insert the | |
1150 * string following the next match. | |
1151 */ | |
1152 if (s->lookahead < MIN_LOOKAHEAD) { | |
1153 fill_window(s); | |
1154 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1155 return need_more; | |
1156 } | |
1157 if (s->lookahead == 0) break; /* flush the current block */ | |
1158 } | |
1159 | |
1160 /* Insert the string window[strstart .. strstart+2] in the | |
1161 * dictionary, and set hash_head to the head of the hash chain: | |
1162 */ | |
1163 if (s->lookahead >= MIN_MATCH) { | |
1164 INSERT_STRING(s, s->strstart, hash_head); | |
1165 } | |
1166 | |
1167 /* Find the longest match, discarding those <= prev_length. | |
1168 * At this point we have always match_length < MIN_MATCH | |
1169 */ | |
1170 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | |
1171 /* To simplify the code, we prevent matches with the string | |
1172 * of window index 0 (in particular we have to avoid a match | |
1173 * of the string with itself at the start of the input file). | |
1174 */ | |
1175 if (s->strategy != Z_HUFFMAN_ONLY) { | |
1176 s->match_length = longest_match (s, hash_head); | |
1177 } | |
1178 /* longest_match() sets match_start */ | |
1179 } | |
1180 if (s->match_length >= MIN_MATCH) { | |
1181 check_match(s, s->strstart, s->match_start, s->match_length); | |
1182 | |
1183 _tr_tally_dist(s, s->strstart - s->match_start, | |
1184 s->match_length - MIN_MATCH, bflush); | |
1185 | |
1186 s->lookahead -= s->match_length; | |
1187 | |
1188 /* Insert new strings in the hash table only if the match length | |
1189 * is not too large. This saves time but degrades compression. | |
1190 */ | |
1191 #ifndef FASTEST | |
1192 if (s->match_length <= s->max_insert_length && | |
1193 s->lookahead >= MIN_MATCH) { | |
1194 s->match_length--; /* string at strstart already in hash table */ | |
1195 do { | |
1196 s->strstart++; | |
1197 INSERT_STRING(s, s->strstart, hash_head); | |
1198 /* strstart never exceeds WSIZE-MAX_MATCH, so there are | |
1199 * always MIN_MATCH bytes ahead. | |
1200 */ | |
1201 } while (--s->match_length != 0); | |
1202 s->strstart++; | |
1203 } else | |
1204 #endif | |
1205 { | |
1206 s->strstart += s->match_length; | |
1207 s->match_length = 0; | |
1208 s->ins_h = s->window[s->strstart]; | |
1209 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | |
1210 #if MIN_MATCH != 3 | |
1211 Call UPDATE_HASH() MIN_MATCH-3 more times | |
1212 #endif | |
1213 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
1214 * matter since it will be recomputed at next deflate call. | |
1215 */ | |
1216 } | |
1217 } else { | |
1218 /* No match, output a literal byte */ | |
1219 Tracevv((stderr,"%c", s->window[s->strstart])); | |
1220 _tr_tally_lit (s, s->window[s->strstart], bflush); | |
1221 s->lookahead--; | |
1222 s->strstart++; | |
1223 } | |
1224 if (bflush) FLUSH_BLOCK(s, 0); | |
1225 } | |
1226 FLUSH_BLOCK(s, flush == Z_FINISH); | |
1227 return flush == Z_FINISH ? finish_done : block_done; | |
1228 } | |
1229 | |
1230 /* =========================================================================== | |
1231 * Same as above, but achieves better compression. We use a lazy | |
1232 * evaluation for matches: a match is finally adopted only if there is | |
1233 * no better match at the next window position. | |
1234 */ | |
1235 local block_state deflate_slow(s, flush) | |
1236 deflate_state *s; | |
1237 int flush; | |
1238 { | |
1239 IPos hash_head = NIL; /* head of hash chain */ | |
1240 int bflush; /* set if current block must be flushed */ | |
1241 | |
1242 /* Process the input block. */ | |
1243 for (;;) { | |
1244 /* Make sure that we always have enough lookahead, except | |
1245 * at the end of the input file. We need MAX_MATCH bytes | |
1246 * for the next match, plus MIN_MATCH bytes to insert the | |
1247 * string following the next match. | |
1248 */ | |
1249 if (s->lookahead < MIN_LOOKAHEAD) { | |
1250 fill_window(s); | |
1251 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
1252 return need_more; | |
1253 } | |
1254 if (s->lookahead == 0) break; /* flush the current block */ | |
1255 } | |
1256 | |
1257 /* Insert the string window[strstart .. strstart+2] in the | |
1258 * dictionary, and set hash_head to the head of the hash chain: | |
1259 */ | |
1260 if (s->lookahead >= MIN_MATCH) { | |
1261 INSERT_STRING(s, s->strstart, hash_head); | |
1262 } | |
1263 | |
1264 /* Find the longest match, discarding those <= prev_length. | |
1265 */ | |
1266 s->prev_length = s->match_length, s->prev_match = s->match_start; | |
1267 s->match_length = MIN_MATCH-1; | |
1268 | |
1269 if (hash_head != NIL && s->prev_length < s->max_lazy_match && | |
1270 s->strstart - hash_head <= MAX_DIST(s)) { | |
1271 /* To simplify the code, we prevent matches with the string | |
1272 * of window index 0 (in particular we have to avoid a match | |
1273 * of the string with itself at the start of the input file). | |
1274 */ | |
1275 if (s->strategy != Z_HUFFMAN_ONLY) { | |
1276 s->match_length = longest_match (s, hash_head); | |
1277 } | |
1278 /* longest_match() sets match_start */ | |
1279 | |
1280 if (s->match_length <= 5 && (s->strategy == Z_FILTERED || | |
1281 (s->match_length == MIN_MATCH && | |
1282 s->strstart - s->match_start > TOO_FAR))) { | |
1283 | |
1284 /* If prev_match is also MIN_MATCH, match_start is garbage | |
1285 * but we will ignore the current match anyway. | |
1286 */ | |
1287 s->match_length = MIN_MATCH-1; | |
1288 } | |
1289 } | |
1290 /* If there was a match at the previous step and the current | |
1291 * match is not better, output the previous match: | |
1292 */ | |
1293 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | |
1294 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | |
1295 /* Do not insert strings in hash table beyond this. */ | |
1296 | |
1297 check_match(s, s->strstart-1, s->prev_match, s->prev_length); | |
1298 | |
1299 _tr_tally_dist(s, s->strstart -1 - s->prev_match, | |
1300 s->prev_length - MIN_MATCH, bflush); | |
1301 | |
1302 /* Insert in hash table all strings up to the end of the match. | |
1303 * strstart-1 and strstart are already inserted. If there is not | |
1304 * enough lookahead, the last two strings are not inserted in | |
1305 * the hash table. | |
1306 */ | |
1307 s->lookahead -= s->prev_length-1; | |
1308 s->prev_length -= 2; | |
1309 do { | |
1310 if (++s->strstart <= max_insert) { | |
1311 INSERT_STRING(s, s->strstart, hash_head); | |
1312 } | |
1313 } while (--s->prev_length != 0); | |
1314 s->match_available = 0; | |
1315 s->match_length = MIN_MATCH-1; | |
1316 s->strstart++; | |
1317 | |
1318 if (bflush) FLUSH_BLOCK(s, 0); | |
1319 | |
1320 } else if (s->match_available) { | |
1321 /* If there was no match at the previous position, output a | |
1322 * single literal. If there was a match but the current match | |
1323 * is longer, truncate the previous match to a single literal. | |
1324 */ | |
1325 Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1326 _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1327 if (bflush) { | |
1328 FLUSH_BLOCK_ONLY(s, 0); | |
1329 } | |
1330 s->strstart++; | |
1331 s->lookahead--; | |
1332 if (s->strm->avail_out == 0) return need_more; | |
1333 } else { | |
1334 /* There is no previous match to compare with, wait for | |
1335 * the next step to decide. | |
1336 */ | |
1337 s->match_available = 1; | |
1338 s->strstart++; | |
1339 s->lookahead--; | |
1340 } | |
1341 } | |
1342 Assert (flush != Z_NO_FLUSH, "no flush?"); | |
1343 if (s->match_available) { | |
1344 Tracevv((stderr,"%c", s->window[s->strstart-1])); | |
1345 _tr_tally_lit(s, s->window[s->strstart-1], bflush); | |
1346 s->match_available = 0; | |
1347 } | |
1348 FLUSH_BLOCK(s, flush == Z_FINISH); | |
1349 return flush == Z_FINISH ? finish_done : block_done; | |
1350 } |