Mercurial > mm7
comparison lib/libpng/png.c @ 2297:5e2e171c6911
wow
author | Ritor1 |
---|---|
date | Mon, 17 Mar 2014 01:22:20 +0600 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2296:6e178010fc29 | 2297:5e2e171c6911 |
---|---|
1 | |
2 /* png.c - location for general purpose libpng functions | |
3 * | |
4 * Last changed in libpng 1.6.9 [February 6, 2014] | |
5 * Copyright (c) 1998-2014 Glenn Randers-Pehrson | |
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |
8 * | |
9 * This code is released under the libpng license. | |
10 * For conditions of distribution and use, see the disclaimer | |
11 * and license in png.h | |
12 */ | |
13 | |
14 #include "pngpriv.h" | |
15 | |
16 /* Generate a compiler error if there is an old png.h in the search path. */ | |
17 typedef png_libpng_version_1_6_10 Your_png_h_is_not_version_1_6_10; | |
18 | |
19 /* Tells libpng that we have already handled the first "num_bytes" bytes | |
20 * of the PNG file signature. If the PNG data is embedded into another | |
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read | |
22 * or write any of the magic bytes before it starts on the IHDR. | |
23 */ | |
24 | |
25 #ifdef PNG_READ_SUPPORTED | |
26 void PNGAPI | |
27 png_set_sig_bytes(png_structrp png_ptr, int num_bytes) | |
28 { | |
29 png_debug(1, "in png_set_sig_bytes"); | |
30 | |
31 if (png_ptr == NULL) | |
32 return; | |
33 | |
34 if (num_bytes > 8) | |
35 png_error(png_ptr, "Too many bytes for PNG signature"); | |
36 | |
37 png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes); | |
38 } | |
39 | |
40 /* Checks whether the supplied bytes match the PNG signature. We allow | |
41 * checking less than the full 8-byte signature so that those apps that | |
42 * already read the first few bytes of a file to determine the file type | |
43 * can simply check the remaining bytes for extra assurance. Returns | |
44 * an integer less than, equal to, or greater than zero if sig is found, | |
45 * respectively, to be less than, to match, or be greater than the correct | |
46 * PNG signature (this is the same behavior as strcmp, memcmp, etc). | |
47 */ | |
48 int PNGAPI | |
49 png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) | |
50 { | |
51 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; | |
52 | |
53 if (num_to_check > 8) | |
54 num_to_check = 8; | |
55 | |
56 else if (num_to_check < 1) | |
57 return (-1); | |
58 | |
59 if (start > 7) | |
60 return (-1); | |
61 | |
62 if (start + num_to_check > 8) | |
63 num_to_check = 8 - start; | |
64 | |
65 return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check))); | |
66 } | |
67 | |
68 #endif /* PNG_READ_SUPPORTED */ | |
69 | |
70 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
71 /* Function to allocate memory for zlib */ | |
72 PNG_FUNCTION(voidpf /* PRIVATE */, | |
73 png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) | |
74 { | |
75 png_alloc_size_t num_bytes = size; | |
76 | |
77 if (png_ptr == NULL) | |
78 return NULL; | |
79 | |
80 if (items >= (~(png_alloc_size_t)0)/size) | |
81 { | |
82 png_warning (png_voidcast(png_structrp, png_ptr), | |
83 "Potential overflow in png_zalloc()"); | |
84 return NULL; | |
85 } | |
86 | |
87 num_bytes *= items; | |
88 return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes); | |
89 } | |
90 | |
91 /* Function to free memory for zlib */ | |
92 void /* PRIVATE */ | |
93 png_zfree(voidpf png_ptr, voidpf ptr) | |
94 { | |
95 png_free(png_voidcast(png_const_structrp,png_ptr), ptr); | |
96 } | |
97 | |
98 /* Reset the CRC variable to 32 bits of 1's. Care must be taken | |
99 * in case CRC is > 32 bits to leave the top bits 0. | |
100 */ | |
101 void /* PRIVATE */ | |
102 png_reset_crc(png_structrp png_ptr) | |
103 { | |
104 /* The cast is safe because the crc is a 32 bit value. */ | |
105 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); | |
106 } | |
107 | |
108 /* Calculate the CRC over a section of data. We can only pass as | |
109 * much data to this routine as the largest single buffer size. We | |
110 * also check that this data will actually be used before going to the | |
111 * trouble of calculating it. | |
112 */ | |
113 void /* PRIVATE */ | |
114 png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length) | |
115 { | |
116 int need_crc = 1; | |
117 | |
118 if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name)) | |
119 { | |
120 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == | |
121 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) | |
122 need_crc = 0; | |
123 } | |
124 | |
125 else /* critical */ | |
126 { | |
127 if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) | |
128 need_crc = 0; | |
129 } | |
130 | |
131 /* 'uLong' is defined in zlib.h as unsigned long; this means that on some | |
132 * systems it is a 64 bit value. crc32, however, returns 32 bits so the | |
133 * following cast is safe. 'uInt' may be no more than 16 bits, so it is | |
134 * necessary to perform a loop here. | |
135 */ | |
136 if (need_crc && length > 0) | |
137 { | |
138 uLong crc = png_ptr->crc; /* Should never issue a warning */ | |
139 | |
140 do | |
141 { | |
142 uInt safe_length = (uInt)length; | |
143 if (safe_length == 0) | |
144 safe_length = (uInt)-1; /* evil, but safe */ | |
145 | |
146 crc = crc32(crc, ptr, safe_length); | |
147 | |
148 /* The following should never issue compiler warnings; if they do the | |
149 * target system has characteristics that will probably violate other | |
150 * assumptions within the libpng code. | |
151 */ | |
152 ptr += safe_length; | |
153 length -= safe_length; | |
154 } | |
155 while (length > 0); | |
156 | |
157 /* And the following is always safe because the crc is only 32 bits. */ | |
158 png_ptr->crc = (png_uint_32)crc; | |
159 } | |
160 } | |
161 | |
162 /* Check a user supplied version number, called from both read and write | |
163 * functions that create a png_struct. | |
164 */ | |
165 int | |
166 png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver) | |
167 { | |
168 if (user_png_ver) | |
169 { | |
170 int i = 0; | |
171 | |
172 do | |
173 { | |
174 if (user_png_ver[i] != png_libpng_ver[i]) | |
175 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; | |
176 } while (png_libpng_ver[i++]); | |
177 } | |
178 | |
179 else | |
180 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; | |
181 | |
182 if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) | |
183 { | |
184 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so | |
185 * we must recompile any applications that use any older library version. | |
186 * For versions after libpng 1.0, we will be compatible, so we need | |
187 * only check the first and third digits (note that when we reach version | |
188 * 1.10 we will need to check the fourth symbol, namely user_png_ver[3]). | |
189 */ | |
190 if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || | |
191 (user_png_ver[0] == '1' && (user_png_ver[2] != png_libpng_ver[2] || | |
192 user_png_ver[3] != png_libpng_ver[3])) || | |
193 (user_png_ver[0] == '0' && user_png_ver[2] < '9')) | |
194 { | |
195 #ifdef PNG_WARNINGS_SUPPORTED | |
196 size_t pos = 0; | |
197 char m[128]; | |
198 | |
199 pos = png_safecat(m, (sizeof m), pos, | |
200 "Application built with libpng-"); | |
201 pos = png_safecat(m, (sizeof m), pos, user_png_ver); | |
202 pos = png_safecat(m, (sizeof m), pos, " but running with "); | |
203 pos = png_safecat(m, (sizeof m), pos, png_libpng_ver); | |
204 PNG_UNUSED(pos) | |
205 | |
206 png_warning(png_ptr, m); | |
207 #endif | |
208 | |
209 #ifdef PNG_ERROR_NUMBERS_SUPPORTED | |
210 png_ptr->flags = 0; | |
211 #endif | |
212 | |
213 return 0; | |
214 } | |
215 } | |
216 | |
217 /* Success return. */ | |
218 return 1; | |
219 } | |
220 | |
221 /* Generic function to create a png_struct for either read or write - this | |
222 * contains the common initialization. | |
223 */ | |
224 PNG_FUNCTION(png_structp /* PRIVATE */, | |
225 png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr, | |
226 png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, | |
227 png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED) | |
228 { | |
229 png_struct create_struct; | |
230 # ifdef PNG_SETJMP_SUPPORTED | |
231 jmp_buf create_jmp_buf; | |
232 # endif | |
233 | |
234 /* This temporary stack-allocated structure is used to provide a place to | |
235 * build enough context to allow the user provided memory allocator (if any) | |
236 * to be called. | |
237 */ | |
238 memset(&create_struct, 0, (sizeof create_struct)); | |
239 | |
240 /* Added at libpng-1.2.6 */ | |
241 # ifdef PNG_USER_LIMITS_SUPPORTED | |
242 create_struct.user_width_max = PNG_USER_WIDTH_MAX; | |
243 create_struct.user_height_max = PNG_USER_HEIGHT_MAX; | |
244 | |
245 # ifdef PNG_USER_CHUNK_CACHE_MAX | |
246 /* Added at libpng-1.2.43 and 1.4.0 */ | |
247 create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX; | |
248 # endif | |
249 | |
250 # ifdef PNG_USER_CHUNK_MALLOC_MAX | |
251 /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists | |
252 * in png_struct regardless. | |
253 */ | |
254 create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX; | |
255 # endif | |
256 # endif | |
257 | |
258 /* The following two API calls simply set fields in png_struct, so it is safe | |
259 * to do them now even though error handling is not yet set up. | |
260 */ | |
261 # ifdef PNG_USER_MEM_SUPPORTED | |
262 png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn); | |
263 # else | |
264 PNG_UNUSED(mem_ptr) | |
265 PNG_UNUSED(malloc_fn) | |
266 PNG_UNUSED(free_fn) | |
267 # endif | |
268 | |
269 /* (*error_fn) can return control to the caller after the error_ptr is set, | |
270 * this will result in a memory leak unless the error_fn does something | |
271 * extremely sophisticated. The design lacks merit but is implicit in the | |
272 * API. | |
273 */ | |
274 png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn); | |
275 | |
276 # ifdef PNG_SETJMP_SUPPORTED | |
277 if (!setjmp(create_jmp_buf)) | |
278 { | |
279 /* Temporarily fake out the longjmp information until we have | |
280 * successfully completed this function. This only works if we have | |
281 * setjmp() support compiled in, but it is safe - this stuff should | |
282 * never happen. | |
283 */ | |
284 create_struct.jmp_buf_ptr = &create_jmp_buf; | |
285 create_struct.jmp_buf_size = 0; /*stack allocation*/ | |
286 create_struct.longjmp_fn = longjmp; | |
287 # else | |
288 { | |
289 # endif | |
290 /* Call the general version checker (shared with read and write code): | |
291 */ | |
292 if (png_user_version_check(&create_struct, user_png_ver)) | |
293 { | |
294 png_structrp png_ptr = png_voidcast(png_structrp, | |
295 png_malloc_warn(&create_struct, (sizeof *png_ptr))); | |
296 | |
297 if (png_ptr != NULL) | |
298 { | |
299 /* png_ptr->zstream holds a back-pointer to the png_struct, so | |
300 * this can only be done now: | |
301 */ | |
302 create_struct.zstream.zalloc = png_zalloc; | |
303 create_struct.zstream.zfree = png_zfree; | |
304 create_struct.zstream.opaque = png_ptr; | |
305 | |
306 # ifdef PNG_SETJMP_SUPPORTED | |
307 /* Eliminate the local error handling: */ | |
308 create_struct.jmp_buf_ptr = NULL; | |
309 create_struct.jmp_buf_size = 0; | |
310 create_struct.longjmp_fn = 0; | |
311 # endif | |
312 | |
313 *png_ptr = create_struct; | |
314 | |
315 /* This is the successful return point */ | |
316 return png_ptr; | |
317 } | |
318 } | |
319 } | |
320 | |
321 /* A longjmp because of a bug in the application storage allocator or a | |
322 * simple failure to allocate the png_struct. | |
323 */ | |
324 return NULL; | |
325 } | |
326 | |
327 /* Allocate the memory for an info_struct for the application. */ | |
328 PNG_FUNCTION(png_infop,PNGAPI | |
329 png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED) | |
330 { | |
331 png_inforp info_ptr; | |
332 | |
333 png_debug(1, "in png_create_info_struct"); | |
334 | |
335 if (png_ptr == NULL) | |
336 return NULL; | |
337 | |
338 /* Use the internal API that does not (or at least should not) error out, so | |
339 * that this call always returns ok. The application typically sets up the | |
340 * error handling *after* creating the info_struct because this is the way it | |
341 * has always been done in 'example.c'. | |
342 */ | |
343 info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr, | |
344 (sizeof *info_ptr))); | |
345 | |
346 if (info_ptr != NULL) | |
347 memset(info_ptr, 0, (sizeof *info_ptr)); | |
348 | |
349 return info_ptr; | |
350 } | |
351 | |
352 /* This function frees the memory associated with a single info struct. | |
353 * Normally, one would use either png_destroy_read_struct() or | |
354 * png_destroy_write_struct() to free an info struct, but this may be | |
355 * useful for some applications. From libpng 1.6.0 this function is also used | |
356 * internally to implement the png_info release part of the 'struct' destroy | |
357 * APIs. This ensures that all possible approaches free the same data (all of | |
358 * it). | |
359 */ | |
360 void PNGAPI | |
361 png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr) | |
362 { | |
363 png_inforp info_ptr = NULL; | |
364 | |
365 png_debug(1, "in png_destroy_info_struct"); | |
366 | |
367 if (png_ptr == NULL) | |
368 return; | |
369 | |
370 if (info_ptr_ptr != NULL) | |
371 info_ptr = *info_ptr_ptr; | |
372 | |
373 if (info_ptr != NULL) | |
374 { | |
375 /* Do this first in case of an error below; if the app implements its own | |
376 * memory management this can lead to png_free calling png_error, which | |
377 * will abort this routine and return control to the app error handler. | |
378 * An infinite loop may result if it then tries to free the same info | |
379 * ptr. | |
380 */ | |
381 *info_ptr_ptr = NULL; | |
382 | |
383 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); | |
384 memset(info_ptr, 0, (sizeof *info_ptr)); | |
385 png_free(png_ptr, info_ptr); | |
386 } | |
387 } | |
388 | |
389 /* Initialize the info structure. This is now an internal function (0.89) | |
390 * and applications using it are urged to use png_create_info_struct() | |
391 * instead. Use deprecated in 1.6.0, internal use removed (used internally it | |
392 * is just a memset). | |
393 * | |
394 * NOTE: it is almost inconceivable that this API is used because it bypasses | |
395 * the user-memory mechanism and the user error handling/warning mechanisms in | |
396 * those cases where it does anything other than a memset. | |
397 */ | |
398 PNG_FUNCTION(void,PNGAPI | |
399 png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size), | |
400 PNG_DEPRECATED) | |
401 { | |
402 png_inforp info_ptr = *ptr_ptr; | |
403 | |
404 png_debug(1, "in png_info_init_3"); | |
405 | |
406 if (info_ptr == NULL) | |
407 return; | |
408 | |
409 if ((sizeof (png_info)) > png_info_struct_size) | |
410 { | |
411 *ptr_ptr = NULL; | |
412 /* The following line is why this API should not be used: */ | |
413 free(info_ptr); | |
414 info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL, | |
415 (sizeof *info_ptr))); | |
416 *ptr_ptr = info_ptr; | |
417 } | |
418 | |
419 /* Set everything to 0 */ | |
420 memset(info_ptr, 0, (sizeof *info_ptr)); | |
421 } | |
422 | |
423 /* The following API is not called internally */ | |
424 void PNGAPI | |
425 png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr, | |
426 int freer, png_uint_32 mask) | |
427 { | |
428 png_debug(1, "in png_data_freer"); | |
429 | |
430 if (png_ptr == NULL || info_ptr == NULL) | |
431 return; | |
432 | |
433 if (freer == PNG_DESTROY_WILL_FREE_DATA) | |
434 info_ptr->free_me |= mask; | |
435 | |
436 else if (freer == PNG_USER_WILL_FREE_DATA) | |
437 info_ptr->free_me &= ~mask; | |
438 | |
439 else | |
440 png_error(png_ptr, "Unknown freer parameter in png_data_freer"); | |
441 } | |
442 | |
443 void PNGAPI | |
444 png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask, | |
445 int num) | |
446 { | |
447 png_debug(1, "in png_free_data"); | |
448 | |
449 if (png_ptr == NULL || info_ptr == NULL) | |
450 return; | |
451 | |
452 #ifdef PNG_TEXT_SUPPORTED | |
453 /* Free text item num or (if num == -1) all text items */ | |
454 if ((mask & PNG_FREE_TEXT) & info_ptr->free_me) | |
455 { | |
456 if (num != -1) | |
457 { | |
458 if (info_ptr->text && info_ptr->text[num].key) | |
459 { | |
460 png_free(png_ptr, info_ptr->text[num].key); | |
461 info_ptr->text[num].key = NULL; | |
462 } | |
463 } | |
464 | |
465 else | |
466 { | |
467 int i; | |
468 for (i = 0; i < info_ptr->num_text; i++) | |
469 png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i); | |
470 png_free(png_ptr, info_ptr->text); | |
471 info_ptr->text = NULL; | |
472 info_ptr->num_text=0; | |
473 } | |
474 } | |
475 #endif | |
476 | |
477 #ifdef PNG_tRNS_SUPPORTED | |
478 /* Free any tRNS entry */ | |
479 if ((mask & PNG_FREE_TRNS) & info_ptr->free_me) | |
480 { | |
481 png_free(png_ptr, info_ptr->trans_alpha); | |
482 info_ptr->trans_alpha = NULL; | |
483 info_ptr->valid &= ~PNG_INFO_tRNS; | |
484 } | |
485 #endif | |
486 | |
487 #ifdef PNG_sCAL_SUPPORTED | |
488 /* Free any sCAL entry */ | |
489 if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) | |
490 { | |
491 png_free(png_ptr, info_ptr->scal_s_width); | |
492 png_free(png_ptr, info_ptr->scal_s_height); | |
493 info_ptr->scal_s_width = NULL; | |
494 info_ptr->scal_s_height = NULL; | |
495 info_ptr->valid &= ~PNG_INFO_sCAL; | |
496 } | |
497 #endif | |
498 | |
499 #ifdef PNG_pCAL_SUPPORTED | |
500 /* Free any pCAL entry */ | |
501 if ((mask & PNG_FREE_PCAL) & info_ptr->free_me) | |
502 { | |
503 png_free(png_ptr, info_ptr->pcal_purpose); | |
504 png_free(png_ptr, info_ptr->pcal_units); | |
505 info_ptr->pcal_purpose = NULL; | |
506 info_ptr->pcal_units = NULL; | |
507 if (info_ptr->pcal_params != NULL) | |
508 { | |
509 unsigned int i; | |
510 for (i = 0; i < info_ptr->pcal_nparams; i++) | |
511 { | |
512 png_free(png_ptr, info_ptr->pcal_params[i]); | |
513 info_ptr->pcal_params[i] = NULL; | |
514 } | |
515 png_free(png_ptr, info_ptr->pcal_params); | |
516 info_ptr->pcal_params = NULL; | |
517 } | |
518 info_ptr->valid &= ~PNG_INFO_pCAL; | |
519 } | |
520 #endif | |
521 | |
522 #ifdef PNG_iCCP_SUPPORTED | |
523 /* Free any profile entry */ | |
524 if ((mask & PNG_FREE_ICCP) & info_ptr->free_me) | |
525 { | |
526 png_free(png_ptr, info_ptr->iccp_name); | |
527 png_free(png_ptr, info_ptr->iccp_profile); | |
528 info_ptr->iccp_name = NULL; | |
529 info_ptr->iccp_profile = NULL; | |
530 info_ptr->valid &= ~PNG_INFO_iCCP; | |
531 } | |
532 #endif | |
533 | |
534 #ifdef PNG_sPLT_SUPPORTED | |
535 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ | |
536 if ((mask & PNG_FREE_SPLT) & info_ptr->free_me) | |
537 { | |
538 if (num != -1) | |
539 { | |
540 if (info_ptr->splt_palettes) | |
541 { | |
542 png_free(png_ptr, info_ptr->splt_palettes[num].name); | |
543 png_free(png_ptr, info_ptr->splt_palettes[num].entries); | |
544 info_ptr->splt_palettes[num].name = NULL; | |
545 info_ptr->splt_palettes[num].entries = NULL; | |
546 } | |
547 } | |
548 | |
549 else | |
550 { | |
551 if (info_ptr->splt_palettes_num) | |
552 { | |
553 int i; | |
554 for (i = 0; i < info_ptr->splt_palettes_num; i++) | |
555 png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, (int)i); | |
556 | |
557 png_free(png_ptr, info_ptr->splt_palettes); | |
558 info_ptr->splt_palettes = NULL; | |
559 info_ptr->splt_palettes_num = 0; | |
560 } | |
561 info_ptr->valid &= ~PNG_INFO_sPLT; | |
562 } | |
563 } | |
564 #endif | |
565 | |
566 #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED | |
567 if ((mask & PNG_FREE_UNKN) & info_ptr->free_me) | |
568 { | |
569 if (num != -1) | |
570 { | |
571 if (info_ptr->unknown_chunks) | |
572 { | |
573 png_free(png_ptr, info_ptr->unknown_chunks[num].data); | |
574 info_ptr->unknown_chunks[num].data = NULL; | |
575 } | |
576 } | |
577 | |
578 else | |
579 { | |
580 int i; | |
581 | |
582 if (info_ptr->unknown_chunks_num) | |
583 { | |
584 for (i = 0; i < info_ptr->unknown_chunks_num; i++) | |
585 png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, (int)i); | |
586 | |
587 png_free(png_ptr, info_ptr->unknown_chunks); | |
588 info_ptr->unknown_chunks = NULL; | |
589 info_ptr->unknown_chunks_num = 0; | |
590 } | |
591 } | |
592 } | |
593 #endif | |
594 | |
595 #ifdef PNG_hIST_SUPPORTED | |
596 /* Free any hIST entry */ | |
597 if ((mask & PNG_FREE_HIST) & info_ptr->free_me) | |
598 { | |
599 png_free(png_ptr, info_ptr->hist); | |
600 info_ptr->hist = NULL; | |
601 info_ptr->valid &= ~PNG_INFO_hIST; | |
602 } | |
603 #endif | |
604 | |
605 /* Free any PLTE entry that was internally allocated */ | |
606 if ((mask & PNG_FREE_PLTE) & info_ptr->free_me) | |
607 { | |
608 png_free(png_ptr, info_ptr->palette); | |
609 info_ptr->palette = NULL; | |
610 info_ptr->valid &= ~PNG_INFO_PLTE; | |
611 info_ptr->num_palette = 0; | |
612 } | |
613 | |
614 #ifdef PNG_INFO_IMAGE_SUPPORTED | |
615 /* Free any image bits attached to the info structure */ | |
616 if ((mask & PNG_FREE_ROWS) & info_ptr->free_me) | |
617 { | |
618 if (info_ptr->row_pointers) | |
619 { | |
620 png_uint_32 row; | |
621 for (row = 0; row < info_ptr->height; row++) | |
622 { | |
623 png_free(png_ptr, info_ptr->row_pointers[row]); | |
624 info_ptr->row_pointers[row] = NULL; | |
625 } | |
626 png_free(png_ptr, info_ptr->row_pointers); | |
627 info_ptr->row_pointers = NULL; | |
628 } | |
629 info_ptr->valid &= ~PNG_INFO_IDAT; | |
630 } | |
631 #endif | |
632 | |
633 if (num != -1) | |
634 mask &= ~PNG_FREE_MUL; | |
635 | |
636 info_ptr->free_me &= ~mask; | |
637 } | |
638 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ | |
639 | |
640 /* This function returns a pointer to the io_ptr associated with the user | |
641 * functions. The application should free any memory associated with this | |
642 * pointer before png_write_destroy() or png_read_destroy() are called. | |
643 */ | |
644 png_voidp PNGAPI | |
645 png_get_io_ptr(png_const_structrp png_ptr) | |
646 { | |
647 if (png_ptr == NULL) | |
648 return (NULL); | |
649 | |
650 return (png_ptr->io_ptr); | |
651 } | |
652 | |
653 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
654 # ifdef PNG_STDIO_SUPPORTED | |
655 /* Initialize the default input/output functions for the PNG file. If you | |
656 * use your own read or write routines, you can call either png_set_read_fn() | |
657 * or png_set_write_fn() instead of png_init_io(). If you have defined | |
658 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a | |
659 * function of your own because "FILE *" isn't necessarily available. | |
660 */ | |
661 void PNGAPI | |
662 png_init_io(png_structrp png_ptr, png_FILE_p fp) | |
663 { | |
664 png_debug(1, "in png_init_io"); | |
665 | |
666 if (png_ptr == NULL) | |
667 return; | |
668 | |
669 png_ptr->io_ptr = (png_voidp)fp; | |
670 } | |
671 # endif | |
672 | |
673 #ifdef PNG_SAVE_INT_32_SUPPORTED | |
674 /* The png_save_int_32 function assumes integers are stored in two's | |
675 * complement format. If this isn't the case, then this routine needs to | |
676 * be modified to write data in two's complement format. Note that, | |
677 * the following works correctly even if png_int_32 has more than 32 bits | |
678 * (compare the more complex code required on read for sign extension.) | |
679 */ | |
680 void PNGAPI | |
681 png_save_int_32(png_bytep buf, png_int_32 i) | |
682 { | |
683 buf[0] = (png_byte)((i >> 24) & 0xff); | |
684 buf[1] = (png_byte)((i >> 16) & 0xff); | |
685 buf[2] = (png_byte)((i >> 8) & 0xff); | |
686 buf[3] = (png_byte)(i & 0xff); | |
687 } | |
688 #endif | |
689 | |
690 # ifdef PNG_TIME_RFC1123_SUPPORTED | |
691 /* Convert the supplied time into an RFC 1123 string suitable for use in | |
692 * a "Creation Time" or other text-based time string. | |
693 */ | |
694 int PNGAPI | |
695 png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime) | |
696 { | |
697 static PNG_CONST char short_months[12][4] = | |
698 {"Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
699 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; | |
700 | |
701 if (out == NULL) | |
702 return 0; | |
703 | |
704 if (ptime->year > 9999 /* RFC1123 limitation */ || | |
705 ptime->month == 0 || ptime->month > 12 || | |
706 ptime->day == 0 || ptime->day > 31 || | |
707 ptime->hour > 23 || ptime->minute > 59 || | |
708 ptime->second > 60) | |
709 return 0; | |
710 | |
711 { | |
712 size_t pos = 0; | |
713 char number_buf[5]; /* enough for a four-digit year */ | |
714 | |
715 # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string)) | |
716 # define APPEND_NUMBER(format, value)\ | |
717 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) | |
718 # define APPEND(ch) if (pos < 28) out[pos++] = (ch) | |
719 | |
720 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day); | |
721 APPEND(' '); | |
722 APPEND_STRING(short_months[(ptime->month - 1)]); | |
723 APPEND(' '); | |
724 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); | |
725 APPEND(' '); | |
726 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour); | |
727 APPEND(':'); | |
728 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute); | |
729 APPEND(':'); | |
730 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second); | |
731 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ | |
732 | |
733 # undef APPEND | |
734 # undef APPEND_NUMBER | |
735 # undef APPEND_STRING | |
736 } | |
737 | |
738 return 1; | |
739 } | |
740 | |
741 # if PNG_LIBPNG_VER < 10700 | |
742 /* To do: remove the following from libpng-1.7 */ | |
743 /* Original API that uses a private buffer in png_struct. | |
744 * Deprecated because it causes png_struct to carry a spurious temporary | |
745 * buffer (png_struct::time_buffer), better to have the caller pass this in. | |
746 */ | |
747 png_const_charp PNGAPI | |
748 png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime) | |
749 { | |
750 if (png_ptr != NULL) | |
751 { | |
752 /* The only failure above if png_ptr != NULL is from an invalid ptime */ | |
753 if (!png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime)) | |
754 png_warning(png_ptr, "Ignoring invalid time value"); | |
755 | |
756 else | |
757 return png_ptr->time_buffer; | |
758 } | |
759 | |
760 return NULL; | |
761 } | |
762 # endif | |
763 # endif /* PNG_TIME_RFC1123_SUPPORTED */ | |
764 | |
765 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ | |
766 | |
767 png_const_charp PNGAPI | |
768 png_get_copyright(png_const_structrp png_ptr) | |
769 { | |
770 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ | |
771 #ifdef PNG_STRING_COPYRIGHT | |
772 return PNG_STRING_COPYRIGHT | |
773 #else | |
774 # ifdef __STDC__ | |
775 return PNG_STRING_NEWLINE \ | |
776 "libpng version 1.6.10 - March 6, 2014" PNG_STRING_NEWLINE \ | |
777 "Copyright (c) 1998-2014 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \ | |
778 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ | |
779 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ | |
780 PNG_STRING_NEWLINE; | |
781 # else | |
782 return "libpng version 1.6.10 - March 6, 2014\ | |
783 Copyright (c) 1998-2014 Glenn Randers-Pehrson\ | |
784 Copyright (c) 1996-1997 Andreas Dilger\ | |
785 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc."; | |
786 # endif | |
787 #endif | |
788 } | |
789 | |
790 /* The following return the library version as a short string in the | |
791 * format 1.0.0 through 99.99.99zz. To get the version of *.h files | |
792 * used with your application, print out PNG_LIBPNG_VER_STRING, which | |
793 * is defined in png.h. | |
794 * Note: now there is no difference between png_get_libpng_ver() and | |
795 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, | |
796 * it is guaranteed that png.c uses the correct version of png.h. | |
797 */ | |
798 png_const_charp PNGAPI | |
799 png_get_libpng_ver(png_const_structrp png_ptr) | |
800 { | |
801 /* Version of *.c files used when building libpng */ | |
802 return png_get_header_ver(png_ptr); | |
803 } | |
804 | |
805 png_const_charp PNGAPI | |
806 png_get_header_ver(png_const_structrp png_ptr) | |
807 { | |
808 /* Version of *.h files used when building libpng */ | |
809 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ | |
810 return PNG_LIBPNG_VER_STRING; | |
811 } | |
812 | |
813 png_const_charp PNGAPI | |
814 png_get_header_version(png_const_structrp png_ptr) | |
815 { | |
816 /* Returns longer string containing both version and date */ | |
817 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ | |
818 #ifdef __STDC__ | |
819 return PNG_HEADER_VERSION_STRING | |
820 # ifndef PNG_READ_SUPPORTED | |
821 " (NO READ SUPPORT)" | |
822 # endif | |
823 PNG_STRING_NEWLINE; | |
824 #else | |
825 return PNG_HEADER_VERSION_STRING; | |
826 #endif | |
827 } | |
828 | |
829 #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED | |
830 /* NOTE: this routine is not used internally! */ | |
831 /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth | |
832 * large of png_color. This lets grayscale images be treated as | |
833 * paletted. Most useful for gamma correction and simplification | |
834 * of code. This API is not used internally. | |
835 */ | |
836 void PNGAPI | |
837 png_build_grayscale_palette(int bit_depth, png_colorp palette) | |
838 { | |
839 int num_palette; | |
840 int color_inc; | |
841 int i; | |
842 int v; | |
843 | |
844 png_debug(1, "in png_do_build_grayscale_palette"); | |
845 | |
846 if (palette == NULL) | |
847 return; | |
848 | |
849 switch (bit_depth) | |
850 { | |
851 case 1: | |
852 num_palette = 2; | |
853 color_inc = 0xff; | |
854 break; | |
855 | |
856 case 2: | |
857 num_palette = 4; | |
858 color_inc = 0x55; | |
859 break; | |
860 | |
861 case 4: | |
862 num_palette = 16; | |
863 color_inc = 0x11; | |
864 break; | |
865 | |
866 case 8: | |
867 num_palette = 256; | |
868 color_inc = 1; | |
869 break; | |
870 | |
871 default: | |
872 num_palette = 0; | |
873 color_inc = 0; | |
874 break; | |
875 } | |
876 | |
877 for (i = 0, v = 0; i < num_palette; i++, v += color_inc) | |
878 { | |
879 palette[i].red = (png_byte)v; | |
880 palette[i].green = (png_byte)v; | |
881 palette[i].blue = (png_byte)v; | |
882 } | |
883 } | |
884 #endif | |
885 | |
886 #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED | |
887 int PNGAPI | |
888 png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name) | |
889 { | |
890 /* Check chunk_name and return "keep" value if it's on the list, else 0 */ | |
891 png_const_bytep p, p_end; | |
892 | |
893 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0) | |
894 return PNG_HANDLE_CHUNK_AS_DEFAULT; | |
895 | |
896 p_end = png_ptr->chunk_list; | |
897 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ | |
898 | |
899 /* The code is the fifth byte after each four byte string. Historically this | |
900 * code was always searched from the end of the list, this is no longer | |
901 * necessary because the 'set' routine handles duplicate entries correcty. | |
902 */ | |
903 do /* num_chunk_list > 0, so at least one */ | |
904 { | |
905 p -= 5; | |
906 | |
907 if (!memcmp(chunk_name, p, 4)) | |
908 return p[4]; | |
909 } | |
910 while (p > p_end); | |
911 | |
912 /* This means that known chunks should be processed and unknown chunks should | |
913 * be handled according to the value of png_ptr->unknown_default; this can be | |
914 * confusing because, as a result, there are two levels of defaulting for | |
915 * unknown chunks. | |
916 */ | |
917 return PNG_HANDLE_CHUNK_AS_DEFAULT; | |
918 } | |
919 | |
920 #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\ | |
921 defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) | |
922 int /* PRIVATE */ | |
923 png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name) | |
924 { | |
925 png_byte chunk_string[5]; | |
926 | |
927 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); | |
928 return png_handle_as_unknown(png_ptr, chunk_string); | |
929 } | |
930 #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */ | |
931 #endif /* SET_UNKNOWN_CHUNKS */ | |
932 | |
933 #ifdef PNG_READ_SUPPORTED | |
934 /* This function, added to libpng-1.0.6g, is untested. */ | |
935 int PNGAPI | |
936 png_reset_zstream(png_structrp png_ptr) | |
937 { | |
938 if (png_ptr == NULL) | |
939 return Z_STREAM_ERROR; | |
940 | |
941 /* WARNING: this resets the window bits to the maximum! */ | |
942 return (inflateReset(&png_ptr->zstream)); | |
943 } | |
944 #endif /* PNG_READ_SUPPORTED */ | |
945 | |
946 /* This function was added to libpng-1.0.7 */ | |
947 png_uint_32 PNGAPI | |
948 png_access_version_number(void) | |
949 { | |
950 /* Version of *.c files used when building libpng */ | |
951 return((png_uint_32)PNG_LIBPNG_VER); | |
952 } | |
953 | |
954 | |
955 | |
956 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
957 /* Ensure that png_ptr->zstream.msg holds some appropriate error message string. | |
958 * If it doesn't 'ret' is used to set it to something appropriate, even in cases | |
959 * like Z_OK or Z_STREAM_END where the error code is apparently a success code. | |
960 */ | |
961 void /* PRIVATE */ | |
962 png_zstream_error(png_structrp png_ptr, int ret) | |
963 { | |
964 /* Translate 'ret' into an appropriate error string, priority is given to the | |
965 * one in zstream if set. This always returns a string, even in cases like | |
966 * Z_OK or Z_STREAM_END where the error code is a success code. | |
967 */ | |
968 if (png_ptr->zstream.msg == NULL) switch (ret) | |
969 { | |
970 default: | |
971 case Z_OK: | |
972 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code"); | |
973 break; | |
974 | |
975 case Z_STREAM_END: | |
976 /* Normal exit */ | |
977 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream"); | |
978 break; | |
979 | |
980 case Z_NEED_DICT: | |
981 /* This means the deflate stream did not have a dictionary; this | |
982 * indicates a bogus PNG. | |
983 */ | |
984 png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary"); | |
985 break; | |
986 | |
987 case Z_ERRNO: | |
988 /* gz APIs only: should not happen */ | |
989 png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error"); | |
990 break; | |
991 | |
992 case Z_STREAM_ERROR: | |
993 /* internal libpng error */ | |
994 png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib"); | |
995 break; | |
996 | |
997 case Z_DATA_ERROR: | |
998 png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream"); | |
999 break; | |
1000 | |
1001 case Z_MEM_ERROR: | |
1002 png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory"); | |
1003 break; | |
1004 | |
1005 case Z_BUF_ERROR: | |
1006 /* End of input or output; not a problem if the caller is doing | |
1007 * incremental read or write. | |
1008 */ | |
1009 png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated"); | |
1010 break; | |
1011 | |
1012 case Z_VERSION_ERROR: | |
1013 png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version"); | |
1014 break; | |
1015 | |
1016 case PNG_UNEXPECTED_ZLIB_RETURN: | |
1017 /* Compile errors here mean that zlib now uses the value co-opted in | |
1018 * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above | |
1019 * and change pngpriv.h. Note that this message is "... return", | |
1020 * whereas the default/Z_OK one is "... return code". | |
1021 */ | |
1022 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return"); | |
1023 break; | |
1024 } | |
1025 } | |
1026 | |
1027 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted | |
1028 * at libpng 1.5.5! | |
1029 */ | |
1030 | |
1031 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ | |
1032 #ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */ | |
1033 static int | |
1034 png_colorspace_check_gamma(png_const_structrp png_ptr, | |
1035 png_colorspacerp colorspace, png_fixed_point gAMA, int from) | |
1036 /* This is called to check a new gamma value against an existing one. The | |
1037 * routine returns false if the new gamma value should not be written. | |
1038 * | |
1039 * 'from' says where the new gamma value comes from: | |
1040 * | |
1041 * 0: the new gamma value is the libpng estimate for an ICC profile | |
1042 * 1: the new gamma value comes from a gAMA chunk | |
1043 * 2: the new gamma value comes from an sRGB chunk | |
1044 */ | |
1045 { | |
1046 png_fixed_point gtest; | |
1047 | |
1048 if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 && | |
1049 (!png_muldiv(>est, colorspace->gamma, PNG_FP_1, gAMA) || | |
1050 png_gamma_significant(gtest))) | |
1051 { | |
1052 /* Either this is an sRGB image, in which case the calculated gamma | |
1053 * approximation should match, or this is an image with a profile and the | |
1054 * value libpng calculates for the gamma of the profile does not match the | |
1055 * value recorded in the file. The former, sRGB, case is an error, the | |
1056 * latter is just a warning. | |
1057 */ | |
1058 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2) | |
1059 { | |
1060 png_chunk_report(png_ptr, "gamma value does not match sRGB", | |
1061 PNG_CHUNK_ERROR); | |
1062 /* Do not overwrite an sRGB value */ | |
1063 return from == 2; | |
1064 } | |
1065 | |
1066 else /* sRGB tag not involved */ | |
1067 { | |
1068 png_chunk_report(png_ptr, "gamma value does not match libpng estimate", | |
1069 PNG_CHUNK_WARNING); | |
1070 return from == 1; | |
1071 } | |
1072 } | |
1073 | |
1074 return 1; | |
1075 } | |
1076 | |
1077 void /* PRIVATE */ | |
1078 png_colorspace_set_gamma(png_const_structrp png_ptr, | |
1079 png_colorspacerp colorspace, png_fixed_point gAMA) | |
1080 { | |
1081 /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't | |
1082 * occur. Since the fixed point representation is assymetrical it is | |
1083 * possible for 1/gamma to overflow the limit of 21474 and this means the | |
1084 * gamma value must be at least 5/100000 and hence at most 20000.0. For | |
1085 * safety the limits here are a little narrower. The values are 0.00016 to | |
1086 * 6250.0, which are truly ridiculous gamma values (and will produce | |
1087 * displays that are all black or all white.) | |
1088 * | |
1089 * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk | |
1090 * handling code, which only required the value to be >0. | |
1091 */ | |
1092 png_const_charp errmsg; | |
1093 | |
1094 if (gAMA < 16 || gAMA > 625000000) | |
1095 errmsg = "gamma value out of range"; | |
1096 | |
1097 # ifdef PNG_READ_gAMA_SUPPORTED | |
1098 /* Allow the application to set the gamma value more than once */ | |
1099 else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 && | |
1100 (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0) | |
1101 errmsg = "duplicate"; | |
1102 # endif | |
1103 | |
1104 /* Do nothing if the colorspace is already invalid */ | |
1105 else if (colorspace->flags & PNG_COLORSPACE_INVALID) | |
1106 return; | |
1107 | |
1108 else | |
1109 { | |
1110 if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, 1/*from gAMA*/)) | |
1111 { | |
1112 /* Store this gamma value. */ | |
1113 colorspace->gamma = gAMA; | |
1114 colorspace->flags |= | |
1115 (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA); | |
1116 } | |
1117 | |
1118 /* At present if the check_gamma test fails the gamma of the colorspace is | |
1119 * not updated however the colorspace is not invalidated. This | |
1120 * corresponds to the case where the existing gamma comes from an sRGB | |
1121 * chunk or profile. An error message has already been output. | |
1122 */ | |
1123 return; | |
1124 } | |
1125 | |
1126 /* Error exit - errmsg has been set. */ | |
1127 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1128 png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR); | |
1129 } | |
1130 | |
1131 void /* PRIVATE */ | |
1132 png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr) | |
1133 { | |
1134 if (info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) | |
1135 { | |
1136 /* Everything is invalid */ | |
1137 info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB| | |
1138 PNG_INFO_iCCP); | |
1139 | |
1140 # ifdef PNG_COLORSPACE_SUPPORTED | |
1141 /* Clean up the iCCP profile now if it won't be used. */ | |
1142 png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/); | |
1143 # else | |
1144 PNG_UNUSED(png_ptr) | |
1145 # endif | |
1146 } | |
1147 | |
1148 else | |
1149 { | |
1150 # ifdef PNG_COLORSPACE_SUPPORTED | |
1151 /* Leave the INFO_iCCP flag set if the pngset.c code has already set | |
1152 * it; this allows a PNG to contain a profile which matches sRGB and | |
1153 * yet still have that profile retrievable by the application. | |
1154 */ | |
1155 if (info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) | |
1156 info_ptr->valid |= PNG_INFO_sRGB; | |
1157 | |
1158 else | |
1159 info_ptr->valid &= ~PNG_INFO_sRGB; | |
1160 | |
1161 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) | |
1162 info_ptr->valid |= PNG_INFO_cHRM; | |
1163 | |
1164 else | |
1165 info_ptr->valid &= ~PNG_INFO_cHRM; | |
1166 # endif | |
1167 | |
1168 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) | |
1169 info_ptr->valid |= PNG_INFO_gAMA; | |
1170 | |
1171 else | |
1172 info_ptr->valid &= ~PNG_INFO_gAMA; | |
1173 } | |
1174 } | |
1175 | |
1176 #ifdef PNG_READ_SUPPORTED | |
1177 void /* PRIVATE */ | |
1178 png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr) | |
1179 { | |
1180 if (info_ptr == NULL) /* reduce code size; check here not in the caller */ | |
1181 return; | |
1182 | |
1183 info_ptr->colorspace = png_ptr->colorspace; | |
1184 png_colorspace_sync_info(png_ptr, info_ptr); | |
1185 } | |
1186 #endif | |
1187 #endif | |
1188 | |
1189 #ifdef PNG_COLORSPACE_SUPPORTED | |
1190 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for | |
1191 * cHRM, as opposed to using chromaticities. These internal APIs return | |
1192 * non-zero on a parameter error. The X, Y and Z values are required to be | |
1193 * positive and less than 1.0. | |
1194 */ | |
1195 static int | |
1196 png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ) | |
1197 { | |
1198 png_int_32 d, dwhite, whiteX, whiteY; | |
1199 | |
1200 d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z; | |
1201 if (!png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d)) return 1; | |
1202 if (!png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d)) return 1; | |
1203 dwhite = d; | |
1204 whiteX = XYZ->red_X; | |
1205 whiteY = XYZ->red_Y; | |
1206 | |
1207 d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z; | |
1208 if (!png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d)) return 1; | |
1209 if (!png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d)) return 1; | |
1210 dwhite += d; | |
1211 whiteX += XYZ->green_X; | |
1212 whiteY += XYZ->green_Y; | |
1213 | |
1214 d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z; | |
1215 if (!png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d)) return 1; | |
1216 if (!png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d)) return 1; | |
1217 dwhite += d; | |
1218 whiteX += XYZ->blue_X; | |
1219 whiteY += XYZ->blue_Y; | |
1220 | |
1221 /* The reference white is simply the sum of the end-point (X,Y,Z) vectors, | |
1222 * thus: | |
1223 */ | |
1224 if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1; | |
1225 if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1; | |
1226 | |
1227 return 0; | |
1228 } | |
1229 | |
1230 static int | |
1231 png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy) | |
1232 { | |
1233 png_fixed_point red_inverse, green_inverse, blue_scale; | |
1234 png_fixed_point left, right, denominator; | |
1235 | |
1236 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically | |
1237 * have end points with 0 tristimulus values (these are impossible end | |
1238 * points, but they are used to cover the possible colors.) | |
1239 */ | |
1240 if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1; | |
1241 if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1; | |
1242 if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1; | |
1243 if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1; | |
1244 if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1; | |
1245 if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1; | |
1246 if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1; | |
1247 if (xy->whitey < 0 || xy->whitey > PNG_FP_1-xy->whitex) return 1; | |
1248 | |
1249 /* The reverse calculation is more difficult because the original tristimulus | |
1250 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 | |
1251 * derived values were recorded in the cHRM chunk; | |
1252 * (red,green,blue,white)x(x,y). This loses one degree of freedom and | |
1253 * therefore an arbitrary ninth value has to be introduced to undo the | |
1254 * original transformations. | |
1255 * | |
1256 * Think of the original end-points as points in (X,Y,Z) space. The | |
1257 * chromaticity values (c) have the property: | |
1258 * | |
1259 * C | |
1260 * c = --------- | |
1261 * X + Y + Z | |
1262 * | |
1263 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the | |
1264 * three chromaticity values (x,y,z) for each end-point obey the | |
1265 * relationship: | |
1266 * | |
1267 * x + y + z = 1 | |
1268 * | |
1269 * This describes the plane in (X,Y,Z) space that intersects each axis at the | |
1270 * value 1.0; call this the chromaticity plane. Thus the chromaticity | |
1271 * calculation has scaled each end-point so that it is on the x+y+z=1 plane | |
1272 * and chromaticity is the intersection of the vector from the origin to the | |
1273 * (X,Y,Z) value with the chromaticity plane. | |
1274 * | |
1275 * To fully invert the chromaticity calculation we would need the three | |
1276 * end-point scale factors, (red-scale, green-scale, blue-scale), but these | |
1277 * were not recorded. Instead we calculated the reference white (X,Y,Z) and | |
1278 * recorded the chromaticity of this. The reference white (X,Y,Z) would have | |
1279 * given all three of the scale factors since: | |
1280 * | |
1281 * color-C = color-c * color-scale | |
1282 * white-C = red-C + green-C + blue-C | |
1283 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale | |
1284 * | |
1285 * But cHRM records only white-x and white-y, so we have lost the white scale | |
1286 * factor: | |
1287 * | |
1288 * white-C = white-c*white-scale | |
1289 * | |
1290 * To handle this the inverse transformation makes an arbitrary assumption | |
1291 * about white-scale: | |
1292 * | |
1293 * Assume: white-Y = 1.0 | |
1294 * Hence: white-scale = 1/white-y | |
1295 * Or: red-Y + green-Y + blue-Y = 1.0 | |
1296 * | |
1297 * Notice the last statement of the assumption gives an equation in three of | |
1298 * the nine values we want to calculate. 8 more equations come from the | |
1299 * above routine as summarised at the top above (the chromaticity | |
1300 * calculation): | |
1301 * | |
1302 * Given: color-x = color-X / (color-X + color-Y + color-Z) | |
1303 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 | |
1304 * | |
1305 * This is 9 simultaneous equations in the 9 variables "color-C" and can be | |
1306 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix | |
1307 * determinants, however this is not as bad as it seems because only 28 of | |
1308 * the total of 90 terms in the various matrices are non-zero. Nevertheless | |
1309 * Cramer's rule is notoriously numerically unstable because the determinant | |
1310 * calculation involves the difference of large, but similar, numbers. It is | |
1311 * difficult to be sure that the calculation is stable for real world values | |
1312 * and it is certain that it becomes unstable where the end points are close | |
1313 * together. | |
1314 * | |
1315 * So this code uses the perhaps slightly less optimal but more | |
1316 * understandable and totally obvious approach of calculating color-scale. | |
1317 * | |
1318 * This algorithm depends on the precision in white-scale and that is | |
1319 * (1/white-y), so we can immediately see that as white-y approaches 0 the | |
1320 * accuracy inherent in the cHRM chunk drops off substantially. | |
1321 * | |
1322 * libpng arithmetic: a simple invertion of the above equations | |
1323 * ------------------------------------------------------------ | |
1324 * | |
1325 * white_scale = 1/white-y | |
1326 * white-X = white-x * white-scale | |
1327 * white-Y = 1.0 | |
1328 * white-Z = (1 - white-x - white-y) * white_scale | |
1329 * | |
1330 * white-C = red-C + green-C + blue-C | |
1331 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale | |
1332 * | |
1333 * This gives us three equations in (red-scale,green-scale,blue-scale) where | |
1334 * all the coefficients are now known: | |
1335 * | |
1336 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale | |
1337 * = white-x/white-y | |
1338 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 | |
1339 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale | |
1340 * = (1 - white-x - white-y)/white-y | |
1341 * | |
1342 * In the last equation color-z is (1 - color-x - color-y) so we can add all | |
1343 * three equations together to get an alternative third: | |
1344 * | |
1345 * red-scale + green-scale + blue-scale = 1/white-y = white-scale | |
1346 * | |
1347 * So now we have a Cramer's rule solution where the determinants are just | |
1348 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve | |
1349 * multiplication of three coefficients so we can't guarantee to avoid | |
1350 * overflow in the libpng fixed point representation. Using Cramer's rule in | |
1351 * floating point is probably a good choice here, but it's not an option for | |
1352 * fixed point. Instead proceed to simplify the first two equations by | |
1353 * eliminating what is likely to be the largest value, blue-scale: | |
1354 * | |
1355 * blue-scale = white-scale - red-scale - green-scale | |
1356 * | |
1357 * Hence: | |
1358 * | |
1359 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = | |
1360 * (white-x - blue-x)*white-scale | |
1361 * | |
1362 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = | |
1363 * 1 - blue-y*white-scale | |
1364 * | |
1365 * And now we can trivially solve for (red-scale,green-scale): | |
1366 * | |
1367 * green-scale = | |
1368 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale | |
1369 * ----------------------------------------------------------- | |
1370 * green-x - blue-x | |
1371 * | |
1372 * red-scale = | |
1373 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale | |
1374 * --------------------------------------------------------- | |
1375 * red-y - blue-y | |
1376 * | |
1377 * Hence: | |
1378 * | |
1379 * red-scale = | |
1380 * ( (green-x - blue-x) * (white-y - blue-y) - | |
1381 * (green-y - blue-y) * (white-x - blue-x) ) / white-y | |
1382 * ------------------------------------------------------------------------- | |
1383 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) | |
1384 * | |
1385 * green-scale = | |
1386 * ( (red-y - blue-y) * (white-x - blue-x) - | |
1387 * (red-x - blue-x) * (white-y - blue-y) ) / white-y | |
1388 * ------------------------------------------------------------------------- | |
1389 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) | |
1390 * | |
1391 * Accuracy: | |
1392 * The input values have 5 decimal digits of accuracy. The values are all in | |
1393 * the range 0 < value < 1, so simple products are in the same range but may | |
1394 * need up to 10 decimal digits to preserve the original precision and avoid | |
1395 * underflow. Because we are using a 32-bit signed representation we cannot | |
1396 * match this; the best is a little over 9 decimal digits, less than 10. | |
1397 * | |
1398 * The approach used here is to preserve the maximum precision within the | |
1399 * signed representation. Because the red-scale calculation above uses the | |
1400 * difference between two products of values that must be in the range -1..+1 | |
1401 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The | |
1402 * factor is irrelevant in the calculation because it is applied to both | |
1403 * numerator and denominator. | |
1404 * | |
1405 * Note that the values of the differences of the products of the | |
1406 * chromaticities in the above equations tend to be small, for example for | |
1407 * the sRGB chromaticities they are: | |
1408 * | |
1409 * red numerator: -0.04751 | |
1410 * green numerator: -0.08788 | |
1411 * denominator: -0.2241 (without white-y multiplication) | |
1412 * | |
1413 * The resultant Y coefficients from the chromaticities of some widely used | |
1414 * color space definitions are (to 15 decimal places): | |
1415 * | |
1416 * sRGB | |
1417 * 0.212639005871510 0.715168678767756 0.072192315360734 | |
1418 * Kodak ProPhoto | |
1419 * 0.288071128229293 0.711843217810102 0.000085653960605 | |
1420 * Adobe RGB | |
1421 * 0.297344975250536 0.627363566255466 0.075291458493998 | |
1422 * Adobe Wide Gamut RGB | |
1423 * 0.258728243040113 0.724682314948566 0.016589442011321 | |
1424 */ | |
1425 /* By the argument, above overflow should be impossible here. The return | |
1426 * value of 2 indicates an internal error to the caller. | |
1427 */ | |
1428 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7)) | |
1429 return 2; | |
1430 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7)) | |
1431 return 2; | |
1432 denominator = left - right; | |
1433 | |
1434 /* Now find the red numerator. */ | |
1435 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7)) | |
1436 return 2; | |
1437 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7)) | |
1438 return 2; | |
1439 | |
1440 /* Overflow is possible here and it indicates an extreme set of PNG cHRM | |
1441 * chunk values. This calculation actually returns the reciprocal of the | |
1442 * scale value because this allows us to delay the multiplication of white-y | |
1443 * into the denominator, which tends to produce a small number. | |
1444 */ | |
1445 if (!png_muldiv(&red_inverse, xy->whitey, denominator, left-right) || | |
1446 red_inverse <= xy->whitey /* r+g+b scales = white scale */) | |
1447 return 1; | |
1448 | |
1449 /* Similarly for green_inverse: */ | |
1450 if (!png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7)) | |
1451 return 2; | |
1452 if (!png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7)) | |
1453 return 2; | |
1454 if (!png_muldiv(&green_inverse, xy->whitey, denominator, left-right) || | |
1455 green_inverse <= xy->whitey) | |
1456 return 1; | |
1457 | |
1458 /* And the blue scale, the checks above guarantee this can't overflow but it | |
1459 * can still produce 0 for extreme cHRM values. | |
1460 */ | |
1461 blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) - | |
1462 png_reciprocal(green_inverse); | |
1463 if (blue_scale <= 0) return 1; | |
1464 | |
1465 | |
1466 /* And fill in the png_XYZ: */ | |
1467 if (!png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse)) return 1; | |
1468 if (!png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse)) return 1; | |
1469 if (!png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1, | |
1470 red_inverse)) | |
1471 return 1; | |
1472 | |
1473 if (!png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse)) | |
1474 return 1; | |
1475 if (!png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse)) | |
1476 return 1; | |
1477 if (!png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1, | |
1478 green_inverse)) | |
1479 return 1; | |
1480 | |
1481 if (!png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1)) return 1; | |
1482 if (!png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1)) return 1; | |
1483 if (!png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale, | |
1484 PNG_FP_1)) | |
1485 return 1; | |
1486 | |
1487 return 0; /*success*/ | |
1488 } | |
1489 | |
1490 static int | |
1491 png_XYZ_normalize(png_XYZ *XYZ) | |
1492 { | |
1493 png_int_32 Y; | |
1494 | |
1495 if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 || | |
1496 XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 || | |
1497 XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0) | |
1498 return 1; | |
1499 | |
1500 /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1. | |
1501 * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore | |
1502 * relying on addition of two positive values producing a negative one is not | |
1503 * safe. | |
1504 */ | |
1505 Y = XYZ->red_Y; | |
1506 if (0x7fffffff - Y < XYZ->green_X) return 1; | |
1507 Y += XYZ->green_Y; | |
1508 if (0x7fffffff - Y < XYZ->blue_X) return 1; | |
1509 Y += XYZ->blue_Y; | |
1510 | |
1511 if (Y != PNG_FP_1) | |
1512 { | |
1513 if (!png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y)) return 1; | |
1514 if (!png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y)) return 1; | |
1515 if (!png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y)) return 1; | |
1516 | |
1517 if (!png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y)) return 1; | |
1518 if (!png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y)) return 1; | |
1519 if (!png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y)) return 1; | |
1520 | |
1521 if (!png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y)) return 1; | |
1522 if (!png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y)) return 1; | |
1523 if (!png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y)) return 1; | |
1524 } | |
1525 | |
1526 return 0; | |
1527 } | |
1528 | |
1529 static int | |
1530 png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta) | |
1531 { | |
1532 /* Allow an error of +/-0.01 (absolute value) on each chromaticity */ | |
1533 return !(PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) || | |
1534 PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) || | |
1535 PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) || | |
1536 PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) || | |
1537 PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) || | |
1538 PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) || | |
1539 PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) || | |
1540 PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta)); | |
1541 } | |
1542 | |
1543 /* Added in libpng-1.6.0, a different check for the validity of a set of cHRM | |
1544 * chunk chromaticities. Earlier checks used to simply look for the overflow | |
1545 * condition (where the determinant of the matrix to solve for XYZ ends up zero | |
1546 * because the chromaticity values are not all distinct.) Despite this it is | |
1547 * theoretically possible to produce chromaticities that are apparently valid | |
1548 * but that rapidly degrade to invalid, potentially crashing, sets because of | |
1549 * arithmetic inaccuracies when calculations are performed on them. The new | |
1550 * check is to round-trip xy -> XYZ -> xy and then check that the result is | |
1551 * within a small percentage of the original. | |
1552 */ | |
1553 static int | |
1554 png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy) | |
1555 { | |
1556 int result; | |
1557 png_xy xy_test; | |
1558 | |
1559 /* As a side-effect this routine also returns the XYZ endpoints. */ | |
1560 result = png_XYZ_from_xy(XYZ, xy); | |
1561 if (result) return result; | |
1562 | |
1563 result = png_xy_from_XYZ(&xy_test, XYZ); | |
1564 if (result) return result; | |
1565 | |
1566 if (png_colorspace_endpoints_match(xy, &xy_test, | |
1567 5/*actually, the math is pretty accurate*/)) | |
1568 return 0; | |
1569 | |
1570 /* Too much slip */ | |
1571 return 1; | |
1572 } | |
1573 | |
1574 /* This is the check going the other way. The XYZ is modified to normalize it | |
1575 * (another side-effect) and the xy chromaticities are returned. | |
1576 */ | |
1577 static int | |
1578 png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ) | |
1579 { | |
1580 int result; | |
1581 png_XYZ XYZtemp; | |
1582 | |
1583 result = png_XYZ_normalize(XYZ); | |
1584 if (result) return result; | |
1585 | |
1586 result = png_xy_from_XYZ(xy, XYZ); | |
1587 if (result) return result; | |
1588 | |
1589 XYZtemp = *XYZ; | |
1590 return png_colorspace_check_xy(&XYZtemp, xy); | |
1591 } | |
1592 | |
1593 /* Used to check for an endpoint match against sRGB */ | |
1594 static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */ | |
1595 { | |
1596 /* color x y */ | |
1597 /* red */ 64000, 33000, | |
1598 /* green */ 30000, 60000, | |
1599 /* blue */ 15000, 6000, | |
1600 /* white */ 31270, 32900 | |
1601 }; | |
1602 | |
1603 static int | |
1604 png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr, | |
1605 png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ, | |
1606 int preferred) | |
1607 { | |
1608 if (colorspace->flags & PNG_COLORSPACE_INVALID) | |
1609 return 0; | |
1610 | |
1611 /* The consistency check is performed on the chromaticities; this factors out | |
1612 * variations because of the normalization (or not) of the end point Y | |
1613 * values. | |
1614 */ | |
1615 if (preferred < 2 && (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS)) | |
1616 { | |
1617 /* The end points must be reasonably close to any we already have. The | |
1618 * following allows an error of up to +/-.001 | |
1619 */ | |
1620 if (!png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, 100)) | |
1621 { | |
1622 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1623 png_benign_error(png_ptr, "inconsistent chromaticities"); | |
1624 return 0; /* failed */ | |
1625 } | |
1626 | |
1627 /* Only overwrite with preferred values */ | |
1628 if (!preferred) | |
1629 return 1; /* ok, but no change */ | |
1630 } | |
1631 | |
1632 colorspace->end_points_xy = *xy; | |
1633 colorspace->end_points_XYZ = *XYZ; | |
1634 colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS; | |
1635 | |
1636 /* The end points are normally quoted to two decimal digits, so allow +/-0.01 | |
1637 * on this test. | |
1638 */ | |
1639 if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000)) | |
1640 colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB; | |
1641 | |
1642 else | |
1643 colorspace->flags &= PNG_COLORSPACE_CANCEL( | |
1644 PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); | |
1645 | |
1646 return 2; /* ok and changed */ | |
1647 } | |
1648 | |
1649 int /* PRIVATE */ | |
1650 png_colorspace_set_chromaticities(png_const_structrp png_ptr, | |
1651 png_colorspacerp colorspace, const png_xy *xy, int preferred) | |
1652 { | |
1653 /* We must check the end points to ensure they are reasonable - in the past | |
1654 * color management systems have crashed as a result of getting bogus | |
1655 * colorant values, while this isn't the fault of libpng it is the | |
1656 * responsibility of libpng because PNG carries the bomb and libpng is in a | |
1657 * position to protect against it. | |
1658 */ | |
1659 png_XYZ XYZ; | |
1660 | |
1661 switch (png_colorspace_check_xy(&XYZ, xy)) | |
1662 { | |
1663 case 0: /* success */ | |
1664 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ, | |
1665 preferred); | |
1666 | |
1667 case 1: | |
1668 /* We can't invert the chromaticities so we can't produce value XYZ | |
1669 * values. Likely as not a color management system will fail too. | |
1670 */ | |
1671 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1672 png_benign_error(png_ptr, "invalid chromaticities"); | |
1673 break; | |
1674 | |
1675 default: | |
1676 /* libpng is broken; this should be a warning but if it happens we | |
1677 * want error reports so for the moment it is an error. | |
1678 */ | |
1679 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1680 png_error(png_ptr, "internal error checking chromaticities"); | |
1681 break; | |
1682 } | |
1683 | |
1684 return 0; /* failed */ | |
1685 } | |
1686 | |
1687 int /* PRIVATE */ | |
1688 png_colorspace_set_endpoints(png_const_structrp png_ptr, | |
1689 png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred) | |
1690 { | |
1691 png_XYZ XYZ = *XYZ_in; | |
1692 png_xy xy; | |
1693 | |
1694 switch (png_colorspace_check_XYZ(&xy, &XYZ)) | |
1695 { | |
1696 case 0: | |
1697 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ, | |
1698 preferred); | |
1699 | |
1700 case 1: | |
1701 /* End points are invalid. */ | |
1702 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1703 png_benign_error(png_ptr, "invalid end points"); | |
1704 break; | |
1705 | |
1706 default: | |
1707 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1708 png_error(png_ptr, "internal error checking chromaticities"); | |
1709 break; | |
1710 } | |
1711 | |
1712 return 0; /* failed */ | |
1713 } | |
1714 | |
1715 #if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED) | |
1716 /* Error message generation */ | |
1717 static char | |
1718 png_icc_tag_char(png_uint_32 byte) | |
1719 { | |
1720 byte &= 0xff; | |
1721 if (byte >= 32 && byte <= 126) | |
1722 return (char)byte; | |
1723 else | |
1724 return '?'; | |
1725 } | |
1726 | |
1727 static void | |
1728 png_icc_tag_name(char *name, png_uint_32 tag) | |
1729 { | |
1730 name[0] = '\''; | |
1731 name[1] = png_icc_tag_char(tag >> 24); | |
1732 name[2] = png_icc_tag_char(tag >> 16); | |
1733 name[3] = png_icc_tag_char(tag >> 8); | |
1734 name[4] = png_icc_tag_char(tag ); | |
1735 name[5] = '\''; | |
1736 } | |
1737 | |
1738 static int | |
1739 is_ICC_signature_char(png_alloc_size_t it) | |
1740 { | |
1741 return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) || | |
1742 (it >= 97 && it <= 122); | |
1743 } | |
1744 | |
1745 static int | |
1746 is_ICC_signature(png_alloc_size_t it) | |
1747 { | |
1748 return is_ICC_signature_char(it >> 24) /* checks all the top bits */ && | |
1749 is_ICC_signature_char((it >> 16) & 0xff) && | |
1750 is_ICC_signature_char((it >> 8) & 0xff) && | |
1751 is_ICC_signature_char(it & 0xff); | |
1752 } | |
1753 | |
1754 static int | |
1755 png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
1756 png_const_charp name, png_alloc_size_t value, png_const_charp reason) | |
1757 { | |
1758 size_t pos; | |
1759 char message[196]; /* see below for calculation */ | |
1760 | |
1761 if (colorspace != NULL) | |
1762 colorspace->flags |= PNG_COLORSPACE_INVALID; | |
1763 | |
1764 pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */ | |
1765 pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */ | |
1766 pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */ | |
1767 if (is_ICC_signature(value)) | |
1768 { | |
1769 /* So 'value' is at most 4 bytes and the following cast is safe */ | |
1770 png_icc_tag_name(message+pos, (png_uint_32)value); | |
1771 pos += 6; /* total +8; less than the else clause */ | |
1772 message[pos++] = ':'; | |
1773 message[pos++] = ' '; | |
1774 } | |
1775 # ifdef PNG_WARNINGS_SUPPORTED | |
1776 else | |
1777 { | |
1778 char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/ | |
1779 | |
1780 pos = png_safecat(message, (sizeof message), pos, | |
1781 png_format_number(number, number+(sizeof number), | |
1782 PNG_NUMBER_FORMAT_x, value)); | |
1783 pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/ | |
1784 } | |
1785 # endif | |
1786 /* The 'reason' is an arbitrary message, allow +79 maximum 195 */ | |
1787 pos = png_safecat(message, (sizeof message), pos, reason); | |
1788 PNG_UNUSED(pos) | |
1789 | |
1790 /* This is recoverable, but make it unconditionally an app_error on write to | |
1791 * avoid writing invalid ICC profiles into PNG files. (I.e. we handle them | |
1792 * on read, with a warning, but on write unless the app turns off | |
1793 * application errors the PNG won't be written.) | |
1794 */ | |
1795 png_chunk_report(png_ptr, message, | |
1796 (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR); | |
1797 | |
1798 return 0; | |
1799 } | |
1800 #endif /* sRGB || iCCP */ | |
1801 | |
1802 #ifdef PNG_sRGB_SUPPORTED | |
1803 int /* PRIVATE */ | |
1804 png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
1805 int intent) | |
1806 { | |
1807 /* sRGB sets known gamma, end points and (from the chunk) intent. */ | |
1808 /* IMPORTANT: these are not necessarily the values found in an ICC profile | |
1809 * because ICC profiles store values adapted to a D50 environment; it is | |
1810 * expected that the ICC profile mediaWhitePointTag will be D50, see the | |
1811 * checks and code elsewhere to understand this better. | |
1812 * | |
1813 * These XYZ values, which are accurate to 5dp, produce rgb to gray | |
1814 * coefficients of (6968,23435,2366), which are reduced (because they add up | |
1815 * to 32769 not 32768) to (6968,23434,2366). These are the values that | |
1816 * libpng has traditionally used (and are the best values given the 15bit | |
1817 * algorithm used by the rgb to gray code.) | |
1818 */ | |
1819 static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */ | |
1820 { | |
1821 /* color X Y Z */ | |
1822 /* red */ 41239, 21264, 1933, | |
1823 /* green */ 35758, 71517, 11919, | |
1824 /* blue */ 18048, 7219, 95053 | |
1825 }; | |
1826 | |
1827 /* Do nothing if the colorspace is already invalidated. */ | |
1828 if (colorspace->flags & PNG_COLORSPACE_INVALID) | |
1829 return 0; | |
1830 | |
1831 /* Check the intent, then check for existing settings. It is valid for the | |
1832 * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must | |
1833 * be consistent with the correct values. If, however, this function is | |
1834 * called below because an iCCP chunk matches sRGB then it is quite | |
1835 * conceivable that an older app recorded incorrect gAMA and cHRM because of | |
1836 * an incorrect calculation based on the values in the profile - this does | |
1837 * *not* invalidate the profile (though it still produces an error, which can | |
1838 * be ignored.) | |
1839 */ | |
1840 if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST) | |
1841 return png_icc_profile_error(png_ptr, colorspace, "sRGB", | |
1842 (unsigned)intent, "invalid sRGB rendering intent"); | |
1843 | |
1844 if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 && | |
1845 colorspace->rendering_intent != intent) | |
1846 return png_icc_profile_error(png_ptr, colorspace, "sRGB", | |
1847 (unsigned)intent, "inconsistent rendering intents"); | |
1848 | |
1849 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0) | |
1850 { | |
1851 png_benign_error(png_ptr, "duplicate sRGB information ignored"); | |
1852 return 0; | |
1853 } | |
1854 | |
1855 /* If the standard sRGB cHRM chunk does not match the one from the PNG file | |
1856 * warn but overwrite the value with the correct one. | |
1857 */ | |
1858 if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 && | |
1859 !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy, | |
1860 100)) | |
1861 png_chunk_report(png_ptr, "cHRM chunk does not match sRGB", | |
1862 PNG_CHUNK_ERROR); | |
1863 | |
1864 /* This check is just done for the error reporting - the routine always | |
1865 * returns true when the 'from' argument corresponds to sRGB (2). | |
1866 */ | |
1867 (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE, | |
1868 2/*from sRGB*/); | |
1869 | |
1870 /* intent: bugs in GCC force 'int' to be used as the parameter type. */ | |
1871 colorspace->rendering_intent = (png_uint_16)intent; | |
1872 colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT; | |
1873 | |
1874 /* endpoints */ | |
1875 colorspace->end_points_xy = sRGB_xy; | |
1876 colorspace->end_points_XYZ = sRGB_XYZ; | |
1877 colorspace->flags |= | |
1878 (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB); | |
1879 | |
1880 /* gamma */ | |
1881 colorspace->gamma = PNG_GAMMA_sRGB_INVERSE; | |
1882 colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA; | |
1883 | |
1884 /* Finally record that we have an sRGB profile */ | |
1885 colorspace->flags |= | |
1886 (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB); | |
1887 | |
1888 return 1; /* set */ | |
1889 } | |
1890 #endif /* sRGB */ | |
1891 | |
1892 #ifdef PNG_iCCP_SUPPORTED | |
1893 /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value | |
1894 * is XYZ(0.9642,1.0,0.8249), which scales to: | |
1895 * | |
1896 * (63189.8112, 65536, 54060.6464) | |
1897 */ | |
1898 static const png_byte D50_nCIEXYZ[12] = | |
1899 { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d }; | |
1900 | |
1901 int /* PRIVATE */ | |
1902 png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
1903 png_const_charp name, png_uint_32 profile_length) | |
1904 { | |
1905 if (profile_length < 132) | |
1906 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, | |
1907 "too short"); | |
1908 | |
1909 if (profile_length & 3) | |
1910 return png_icc_profile_error(png_ptr, colorspace, name, profile_length, | |
1911 "invalid length"); | |
1912 | |
1913 return 1; | |
1914 } | |
1915 | |
1916 int /* PRIVATE */ | |
1917 png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
1918 png_const_charp name, png_uint_32 profile_length, | |
1919 png_const_bytep profile/* first 132 bytes only */, int color_type) | |
1920 { | |
1921 png_uint_32 temp; | |
1922 | |
1923 /* Length check; this cannot be ignored in this code because profile_length | |
1924 * is used later to check the tag table, so even if the profile seems over | |
1925 * long profile_length from the caller must be correct. The caller can fix | |
1926 * this up on read or write by just passing in the profile header length. | |
1927 */ | |
1928 temp = png_get_uint_32(profile); | |
1929 if (temp != profile_length) | |
1930 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
1931 "length does not match profile"); | |
1932 | |
1933 temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */ | |
1934 if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */ | |
1935 profile_length < 132+12*temp) /* truncated tag table */ | |
1936 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
1937 "tag count too large"); | |
1938 | |
1939 /* The 'intent' must be valid or we can't store it, ICC limits the intent to | |
1940 * 16 bits. | |
1941 */ | |
1942 temp = png_get_uint_32(profile+64); | |
1943 if (temp >= 0xffff) /* The ICC limit */ | |
1944 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
1945 "invalid rendering intent"); | |
1946 | |
1947 /* This is just a warning because the profile may be valid in future | |
1948 * versions. | |
1949 */ | |
1950 if (temp >= PNG_sRGB_INTENT_LAST) | |
1951 (void)png_icc_profile_error(png_ptr, NULL, name, temp, | |
1952 "intent outside defined range"); | |
1953 | |
1954 /* At this point the tag table can't be checked because it hasn't necessarily | |
1955 * been loaded; however, various header fields can be checked. These checks | |
1956 * are for values permitted by the PNG spec in an ICC profile; the PNG spec | |
1957 * restricts the profiles that can be passed in an iCCP chunk (they must be | |
1958 * appropriate to processing PNG data!) | |
1959 */ | |
1960 | |
1961 /* Data checks (could be skipped). These checks must be independent of the | |
1962 * version number; however, the version number doesn't accomodate changes in | |
1963 * the header fields (just the known tags and the interpretation of the | |
1964 * data.) | |
1965 */ | |
1966 temp = png_get_uint_32(profile+36); /* signature 'ascp' */ | |
1967 if (temp != 0x61637370) | |
1968 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
1969 "invalid signature"); | |
1970 | |
1971 /* Currently the PCS illuminant/adopted white point (the computational | |
1972 * white point) are required to be D50, | |
1973 * however the profile contains a record of the illuminant so perhaps ICC | |
1974 * expects to be able to change this in the future (despite the rationale in | |
1975 * the introduction for using a fixed PCS adopted white.) Consequently the | |
1976 * following is just a warning. | |
1977 */ | |
1978 if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0) | |
1979 (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/, | |
1980 "PCS illuminant is not D50"); | |
1981 | |
1982 /* The PNG spec requires this: | |
1983 * "If the iCCP chunk is present, the image samples conform to the colour | |
1984 * space represented by the embedded ICC profile as defined by the | |
1985 * International Color Consortium [ICC]. The colour space of the ICC profile | |
1986 * shall be an RGB colour space for colour images (PNG colour types 2, 3, and | |
1987 * 6), or a greyscale colour space for greyscale images (PNG colour types 0 | |
1988 * and 4)." | |
1989 * | |
1990 * This checking code ensures the embedded profile (on either read or write) | |
1991 * conforms to the specification requirements. Notice that an ICC 'gray' | |
1992 * color-space profile contains the information to transform the monochrome | |
1993 * data to XYZ or L*a*b (according to which PCS the profile uses) and this | |
1994 * should be used in preference to the standard libpng K channel replication | |
1995 * into R, G and B channels. | |
1996 * | |
1997 * Previously it was suggested that an RGB profile on grayscale data could be | |
1998 * handled. However it it is clear that using an RGB profile in this context | |
1999 * must be an error - there is no specification of what it means. Thus it is | |
2000 * almost certainly more correct to ignore the profile. | |
2001 */ | |
2002 temp = png_get_uint_32(profile+16); /* data colour space field */ | |
2003 switch (temp) | |
2004 { | |
2005 case 0x52474220: /* 'RGB ' */ | |
2006 if (!(color_type & PNG_COLOR_MASK_COLOR)) | |
2007 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2008 "RGB color space not permitted on grayscale PNG"); | |
2009 break; | |
2010 | |
2011 case 0x47524159: /* 'GRAY' */ | |
2012 if (color_type & PNG_COLOR_MASK_COLOR) | |
2013 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2014 "Gray color space not permitted on RGB PNG"); | |
2015 break; | |
2016 | |
2017 default: | |
2018 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2019 "invalid ICC profile color space"); | |
2020 } | |
2021 | |
2022 /* It is up to the application to check that the profile class matches the | |
2023 * application requirements; the spec provides no guidance, but it's pretty | |
2024 * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer | |
2025 * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these | |
2026 * cases. Issue an error for device link or abstract profiles - these don't | |
2027 * contain the records necessary to transform the color-space to anything | |
2028 * other than the target device (and not even that for an abstract profile). | |
2029 * Profiles of these classes may not be embedded in images. | |
2030 */ | |
2031 temp = png_get_uint_32(profile+12); /* profile/device class */ | |
2032 switch (temp) | |
2033 { | |
2034 case 0x73636E72: /* 'scnr' */ | |
2035 case 0x6D6E7472: /* 'mntr' */ | |
2036 case 0x70727472: /* 'prtr' */ | |
2037 case 0x73706163: /* 'spac' */ | |
2038 /* All supported */ | |
2039 break; | |
2040 | |
2041 case 0x61627374: /* 'abst' */ | |
2042 /* May not be embedded in an image */ | |
2043 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2044 "invalid embedded Abstract ICC profile"); | |
2045 | |
2046 case 0x6C696E6B: /* 'link' */ | |
2047 /* DeviceLink profiles cannnot be interpreted in a non-device specific | |
2048 * fashion, if an app uses the AToB0Tag in the profile the results are | |
2049 * undefined unless the result is sent to the intended device, | |
2050 * therefore a DeviceLink profile should not be found embedded in a | |
2051 * PNG. | |
2052 */ | |
2053 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2054 "unexpected DeviceLink ICC profile class"); | |
2055 | |
2056 case 0x6E6D636C: /* 'nmcl' */ | |
2057 /* A NamedColor profile is also device specific, however it doesn't | |
2058 * contain an AToB0 tag that is open to misintrepretation. Almost | |
2059 * certainly it will fail the tests below. | |
2060 */ | |
2061 (void)png_icc_profile_error(png_ptr, NULL, name, temp, | |
2062 "unexpected NamedColor ICC profile class"); | |
2063 break; | |
2064 | |
2065 default: | |
2066 /* To allow for future enhancements to the profile accept unrecognized | |
2067 * profile classes with a warning, these then hit the test below on the | |
2068 * tag content to ensure they are backward compatible with one of the | |
2069 * understood profiles. | |
2070 */ | |
2071 (void)png_icc_profile_error(png_ptr, NULL, name, temp, | |
2072 "unrecognized ICC profile class"); | |
2073 break; | |
2074 } | |
2075 | |
2076 /* For any profile other than a device link one the PCS must be encoded | |
2077 * either in XYZ or Lab. | |
2078 */ | |
2079 temp = png_get_uint_32(profile+20); | |
2080 switch (temp) | |
2081 { | |
2082 case 0x58595A20: /* 'XYZ ' */ | |
2083 case 0x4C616220: /* 'Lab ' */ | |
2084 break; | |
2085 | |
2086 default: | |
2087 return png_icc_profile_error(png_ptr, colorspace, name, temp, | |
2088 "unexpected ICC PCS encoding"); | |
2089 } | |
2090 | |
2091 return 1; | |
2092 } | |
2093 | |
2094 int /* PRIVATE */ | |
2095 png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
2096 png_const_charp name, png_uint_32 profile_length, | |
2097 png_const_bytep profile /* header plus whole tag table */) | |
2098 { | |
2099 png_uint_32 tag_count = png_get_uint_32(profile+128); | |
2100 png_uint_32 itag; | |
2101 png_const_bytep tag = profile+132; /* The first tag */ | |
2102 | |
2103 /* First scan all the tags in the table and add bits to the icc_info value | |
2104 * (temporarily in 'tags'). | |
2105 */ | |
2106 for (itag=0; itag < tag_count; ++itag, tag += 12) | |
2107 { | |
2108 png_uint_32 tag_id = png_get_uint_32(tag+0); | |
2109 png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */ | |
2110 png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */ | |
2111 | |
2112 /* The ICC specification does not exclude zero length tags, therefore the | |
2113 * start might actually be anywhere if there is no data, but this would be | |
2114 * a clear abuse of the intent of the standard so the start is checked for | |
2115 * being in range. All defined tag types have an 8 byte header - a 4 byte | |
2116 * type signature then 0. | |
2117 */ | |
2118 if ((tag_start & 3) != 0) | |
2119 { | |
2120 /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is | |
2121 * only a warning here because libpng does not care about the | |
2122 * alignment. | |
2123 */ | |
2124 (void)png_icc_profile_error(png_ptr, NULL, name, tag_id, | |
2125 "ICC profile tag start not a multiple of 4"); | |
2126 } | |
2127 | |
2128 /* This is a hard error; potentially it can cause read outside the | |
2129 * profile. | |
2130 */ | |
2131 if (tag_start > profile_length || tag_length > profile_length - tag_start) | |
2132 return png_icc_profile_error(png_ptr, colorspace, name, tag_id, | |
2133 "ICC profile tag outside profile"); | |
2134 } | |
2135 | |
2136 return 1; /* success, maybe with warnings */ | |
2137 } | |
2138 | |
2139 #ifdef PNG_sRGB_SUPPORTED | |
2140 /* Information about the known ICC sRGB profiles */ | |
2141 static const struct | |
2142 { | |
2143 png_uint_32 adler, crc, length; | |
2144 png_uint_32 md5[4]; | |
2145 png_byte have_md5; | |
2146 png_byte is_broken; | |
2147 png_uint_16 intent; | |
2148 | |
2149 # define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0) | |
2150 # define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\ | |
2151 { adler, crc, length, md5, broke, intent }, | |
2152 | |
2153 } png_sRGB_checks[] = | |
2154 { | |
2155 /* This data comes from contrib/tools/checksum-icc run on downloads of | |
2156 * all four ICC sRGB profiles from www.color.org. | |
2157 */ | |
2158 /* adler32, crc32, MD5[4], intent, date, length, file-name */ | |
2159 PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9, | |
2160 PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0, | |
2161 "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc") | |
2162 | |
2163 /* ICC sRGB v2 perceptual no black-compensation: */ | |
2164 PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21, | |
2165 PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0, | |
2166 "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc") | |
2167 | |
2168 PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae, | |
2169 PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0, | |
2170 "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc") | |
2171 | |
2172 /* ICC sRGB v4 perceptual */ | |
2173 PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812, | |
2174 PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0, | |
2175 "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc") | |
2176 | |
2177 /* The following profiles have no known MD5 checksum. If there is a match | |
2178 * on the (empty) MD5 the other fields are used to attempt a match and | |
2179 * a warning is produced. The first two of these profiles have a 'cprt' tag | |
2180 * which suggests that they were also made by Hewlett Packard. | |
2181 */ | |
2182 PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce, | |
2183 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0, | |
2184 "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc") | |
2185 | |
2186 /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not | |
2187 * match the D50 PCS illuminant in the header (it is in fact the D65 values, | |
2188 * so the white point is recorded as the un-adapted value.) The profiles | |
2189 * below only differ in one byte - the intent - and are basically the same as | |
2190 * the previous profile except for the mediaWhitePointTag error and a missing | |
2191 * chromaticAdaptationTag. | |
2192 */ | |
2193 PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552, | |
2194 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/, | |
2195 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual") | |
2196 | |
2197 PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d, | |
2198 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/, | |
2199 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative") | |
2200 }; | |
2201 | |
2202 static int | |
2203 png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr, | |
2204 png_const_bytep profile, uLong adler) | |
2205 { | |
2206 /* The quick check is to verify just the MD5 signature and trust the | |
2207 * rest of the data. Because the profile has already been verified for | |
2208 * correctness this is safe. png_colorspace_set_sRGB will check the 'intent' | |
2209 * field too, so if the profile has been edited with an intent not defined | |
2210 * by sRGB (but maybe defined by a later ICC specification) the read of | |
2211 * the profile will fail at that point. | |
2212 */ | |
2213 png_uint_32 length = 0; | |
2214 png_uint_32 intent = 0x10000; /* invalid */ | |
2215 #if PNG_sRGB_PROFILE_CHECKS > 1 | |
2216 uLong crc = 0; /* the value for 0 length data */ | |
2217 #endif | |
2218 unsigned int i; | |
2219 | |
2220 for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i) | |
2221 { | |
2222 if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] && | |
2223 png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] && | |
2224 png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] && | |
2225 png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3]) | |
2226 { | |
2227 /* This may be one of the old HP profiles without an MD5, in that | |
2228 * case we can only use the length and Adler32 (note that these | |
2229 * are not used by default if there is an MD5!) | |
2230 */ | |
2231 # if PNG_sRGB_PROFILE_CHECKS == 0 | |
2232 if (png_sRGB_checks[i].have_md5) | |
2233 return 1+png_sRGB_checks[i].is_broken; | |
2234 # endif | |
2235 | |
2236 /* Profile is unsigned or more checks have been configured in. */ | |
2237 if (length == 0) | |
2238 { | |
2239 length = png_get_uint_32(profile); | |
2240 intent = png_get_uint_32(profile+64); | |
2241 } | |
2242 | |
2243 /* Length *and* intent must match */ | |
2244 if (length == png_sRGB_checks[i].length && | |
2245 intent == png_sRGB_checks[i].intent) | |
2246 { | |
2247 /* Now calculate the adler32 if not done already. */ | |
2248 if (adler == 0) | |
2249 { | |
2250 adler = adler32(0, NULL, 0); | |
2251 adler = adler32(adler, profile, length); | |
2252 } | |
2253 | |
2254 if (adler == png_sRGB_checks[i].adler) | |
2255 { | |
2256 /* These basic checks suggest that the data has not been | |
2257 * modified, but if the check level is more than 1 perform | |
2258 * our own crc32 checksum on the data. | |
2259 */ | |
2260 # if PNG_sRGB_PROFILE_CHECKS > 1 | |
2261 if (crc == 0) | |
2262 { | |
2263 crc = crc32(0, NULL, 0); | |
2264 crc = crc32(crc, profile, length); | |
2265 } | |
2266 | |
2267 /* So this check must pass for the 'return' below to happen. | |
2268 */ | |
2269 if (crc == png_sRGB_checks[i].crc) | |
2270 # endif | |
2271 { | |
2272 if (png_sRGB_checks[i].is_broken) | |
2273 { | |
2274 /* These profiles are known to have bad data that may cause | |
2275 * problems if they are used, therefore attempt to | |
2276 * discourage their use, skip the 'have_md5' warning below, | |
2277 * which is made irrelevant by this error. | |
2278 */ | |
2279 png_chunk_report(png_ptr, "known incorrect sRGB profile", | |
2280 PNG_CHUNK_ERROR); | |
2281 } | |
2282 | |
2283 /* Warn that this being done; this isn't even an error since | |
2284 * the profile is perfectly valid, but it would be nice if | |
2285 * people used the up-to-date ones. | |
2286 */ | |
2287 else if (!png_sRGB_checks[i].have_md5) | |
2288 { | |
2289 png_chunk_report(png_ptr, | |
2290 "out-of-date sRGB profile with no signature", | |
2291 PNG_CHUNK_WARNING); | |
2292 } | |
2293 | |
2294 return 1+png_sRGB_checks[i].is_broken; | |
2295 } | |
2296 } | |
2297 } | |
2298 | |
2299 # if PNG_sRGB_PROFILE_CHECKS > 0 | |
2300 /* The signature matched, but the profile had been changed in some | |
2301 * way. This probably indicates a data error or uninformed hacking. | |
2302 * Fall through to "no match". | |
2303 */ | |
2304 png_chunk_report(png_ptr, | |
2305 "Not recognizing known sRGB profile that has been edited", | |
2306 PNG_CHUNK_WARNING); | |
2307 break; | |
2308 # endif | |
2309 } | |
2310 } | |
2311 | |
2312 return 0; /* no match */ | |
2313 } | |
2314 #endif | |
2315 | |
2316 #ifdef PNG_sRGB_SUPPORTED | |
2317 void /* PRIVATE */ | |
2318 png_icc_set_sRGB(png_const_structrp png_ptr, | |
2319 png_colorspacerp colorspace, png_const_bytep profile, uLong adler) | |
2320 { | |
2321 /* Is this profile one of the known ICC sRGB profiles? If it is, just set | |
2322 * the sRGB information. | |
2323 */ | |
2324 if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler)) | |
2325 (void)png_colorspace_set_sRGB(png_ptr, colorspace, | |
2326 (int)/*already checked*/png_get_uint_32(profile+64)); | |
2327 } | |
2328 #endif /* PNG_READ_sRGB_SUPPORTED */ | |
2329 | |
2330 int /* PRIVATE */ | |
2331 png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace, | |
2332 png_const_charp name, png_uint_32 profile_length, png_const_bytep profile, | |
2333 int color_type) | |
2334 { | |
2335 if (colorspace->flags & PNG_COLORSPACE_INVALID) | |
2336 return 0; | |
2337 | |
2338 if (png_icc_check_length(png_ptr, colorspace, name, profile_length) && | |
2339 png_icc_check_header(png_ptr, colorspace, name, profile_length, profile, | |
2340 color_type) && | |
2341 png_icc_check_tag_table(png_ptr, colorspace, name, profile_length, | |
2342 profile)) | |
2343 { | |
2344 # ifdef PNG_sRGB_SUPPORTED | |
2345 /* If no sRGB support, don't try storing sRGB information */ | |
2346 png_icc_set_sRGB(png_ptr, colorspace, profile, 0); | |
2347 # endif | |
2348 return 1; | |
2349 } | |
2350 | |
2351 /* Failure case */ | |
2352 return 0; | |
2353 } | |
2354 #endif /* iCCP */ | |
2355 | |
2356 #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED | |
2357 void /* PRIVATE */ | |
2358 png_colorspace_set_rgb_coefficients(png_structrp png_ptr) | |
2359 { | |
2360 /* Set the rgb_to_gray coefficients from the colorspace. */ | |
2361 if (!png_ptr->rgb_to_gray_coefficients_set && | |
2362 (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0) | |
2363 { | |
2364 /* png_set_background has not been called, get the coefficients from the Y | |
2365 * values of the colorspace colorants. | |
2366 */ | |
2367 png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y; | |
2368 png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y; | |
2369 png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y; | |
2370 png_fixed_point total = r+g+b; | |
2371 | |
2372 if (total > 0 && | |
2373 r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 && | |
2374 g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 && | |
2375 b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 && | |
2376 r+g+b <= 32769) | |
2377 { | |
2378 /* We allow 0 coefficients here. r+g+b may be 32769 if two or | |
2379 * all of the coefficients were rounded up. Handle this by | |
2380 * reducing the *largest* coefficient by 1; this matches the | |
2381 * approach used for the default coefficients in pngrtran.c | |
2382 */ | |
2383 int add = 0; | |
2384 | |
2385 if (r+g+b > 32768) | |
2386 add = -1; | |
2387 else if (r+g+b < 32768) | |
2388 add = 1; | |
2389 | |
2390 if (add != 0) | |
2391 { | |
2392 if (g >= r && g >= b) | |
2393 g += add; | |
2394 else if (r >= g && r >= b) | |
2395 r += add; | |
2396 else | |
2397 b += add; | |
2398 } | |
2399 | |
2400 /* Check for an internal error. */ | |
2401 if (r+g+b != 32768) | |
2402 png_error(png_ptr, | |
2403 "internal error handling cHRM coefficients"); | |
2404 | |
2405 else | |
2406 { | |
2407 png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r; | |
2408 png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g; | |
2409 } | |
2410 } | |
2411 | |
2412 /* This is a png_error at present even though it could be ignored - | |
2413 * it should never happen, but it is important that if it does, the | |
2414 * bug is fixed. | |
2415 */ | |
2416 else | |
2417 png_error(png_ptr, "internal error handling cHRM->XYZ"); | |
2418 } | |
2419 } | |
2420 #endif | |
2421 | |
2422 #endif /* COLORSPACE */ | |
2423 | |
2424 void /* PRIVATE */ | |
2425 png_check_IHDR(png_const_structrp png_ptr, | |
2426 png_uint_32 width, png_uint_32 height, int bit_depth, | |
2427 int color_type, int interlace_type, int compression_type, | |
2428 int filter_type) | |
2429 { | |
2430 int error = 0; | |
2431 | |
2432 /* Check for width and height valid values */ | |
2433 if (width == 0) | |
2434 { | |
2435 png_warning(png_ptr, "Image width is zero in IHDR"); | |
2436 error = 1; | |
2437 } | |
2438 | |
2439 if (height == 0) | |
2440 { | |
2441 png_warning(png_ptr, "Image height is zero in IHDR"); | |
2442 error = 1; | |
2443 } | |
2444 | |
2445 # ifdef PNG_SET_USER_LIMITS_SUPPORTED | |
2446 if (width > png_ptr->user_width_max) | |
2447 | |
2448 # else | |
2449 if (width > PNG_USER_WIDTH_MAX) | |
2450 # endif | |
2451 { | |
2452 png_warning(png_ptr, "Image width exceeds user limit in IHDR"); | |
2453 error = 1; | |
2454 } | |
2455 | |
2456 # ifdef PNG_SET_USER_LIMITS_SUPPORTED | |
2457 if (height > png_ptr->user_height_max) | |
2458 # else | |
2459 if (height > PNG_USER_HEIGHT_MAX) | |
2460 # endif | |
2461 { | |
2462 png_warning(png_ptr, "Image height exceeds user limit in IHDR"); | |
2463 error = 1; | |
2464 } | |
2465 | |
2466 if (width > PNG_UINT_31_MAX) | |
2467 { | |
2468 png_warning(png_ptr, "Invalid image width in IHDR"); | |
2469 error = 1; | |
2470 } | |
2471 | |
2472 if (height > PNG_UINT_31_MAX) | |
2473 { | |
2474 png_warning(png_ptr, "Invalid image height in IHDR"); | |
2475 error = 1; | |
2476 } | |
2477 | |
2478 /* Check other values */ | |
2479 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && | |
2480 bit_depth != 8 && bit_depth != 16) | |
2481 { | |
2482 png_warning(png_ptr, "Invalid bit depth in IHDR"); | |
2483 error = 1; | |
2484 } | |
2485 | |
2486 if (color_type < 0 || color_type == 1 || | |
2487 color_type == 5 || color_type > 6) | |
2488 { | |
2489 png_warning(png_ptr, "Invalid color type in IHDR"); | |
2490 error = 1; | |
2491 } | |
2492 | |
2493 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || | |
2494 ((color_type == PNG_COLOR_TYPE_RGB || | |
2495 color_type == PNG_COLOR_TYPE_GRAY_ALPHA || | |
2496 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) | |
2497 { | |
2498 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); | |
2499 error = 1; | |
2500 } | |
2501 | |
2502 if (interlace_type >= PNG_INTERLACE_LAST) | |
2503 { | |
2504 png_warning(png_ptr, "Unknown interlace method in IHDR"); | |
2505 error = 1; | |
2506 } | |
2507 | |
2508 if (compression_type != PNG_COMPRESSION_TYPE_BASE) | |
2509 { | |
2510 png_warning(png_ptr, "Unknown compression method in IHDR"); | |
2511 error = 1; | |
2512 } | |
2513 | |
2514 # ifdef PNG_MNG_FEATURES_SUPPORTED | |
2515 /* Accept filter_method 64 (intrapixel differencing) only if | |
2516 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and | |
2517 * 2. Libpng did not read a PNG signature (this filter_method is only | |
2518 * used in PNG datastreams that are embedded in MNG datastreams) and | |
2519 * 3. The application called png_permit_mng_features with a mask that | |
2520 * included PNG_FLAG_MNG_FILTER_64 and | |
2521 * 4. The filter_method is 64 and | |
2522 * 5. The color_type is RGB or RGBA | |
2523 */ | |
2524 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) && | |
2525 png_ptr->mng_features_permitted) | |
2526 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); | |
2527 | |
2528 if (filter_type != PNG_FILTER_TYPE_BASE) | |
2529 { | |
2530 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && | |
2531 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && | |
2532 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && | |
2533 (color_type == PNG_COLOR_TYPE_RGB || | |
2534 color_type == PNG_COLOR_TYPE_RGB_ALPHA))) | |
2535 { | |
2536 png_warning(png_ptr, "Unknown filter method in IHDR"); | |
2537 error = 1; | |
2538 } | |
2539 | |
2540 if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) | |
2541 { | |
2542 png_warning(png_ptr, "Invalid filter method in IHDR"); | |
2543 error = 1; | |
2544 } | |
2545 } | |
2546 | |
2547 # else | |
2548 if (filter_type != PNG_FILTER_TYPE_BASE) | |
2549 { | |
2550 png_warning(png_ptr, "Unknown filter method in IHDR"); | |
2551 error = 1; | |
2552 } | |
2553 # endif | |
2554 | |
2555 if (error == 1) | |
2556 png_error(png_ptr, "Invalid IHDR data"); | |
2557 } | |
2558 | |
2559 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) | |
2560 /* ASCII to fp functions */ | |
2561 /* Check an ASCII formated floating point value, see the more detailed | |
2562 * comments in pngpriv.h | |
2563 */ | |
2564 /* The following is used internally to preserve the sticky flags */ | |
2565 #define png_fp_add(state, flags) ((state) |= (flags)) | |
2566 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) | |
2567 | |
2568 int /* PRIVATE */ | |
2569 png_check_fp_number(png_const_charp string, png_size_t size, int *statep, | |
2570 png_size_tp whereami) | |
2571 { | |
2572 int state = *statep; | |
2573 png_size_t i = *whereami; | |
2574 | |
2575 while (i < size) | |
2576 { | |
2577 int type; | |
2578 /* First find the type of the next character */ | |
2579 switch (string[i]) | |
2580 { | |
2581 case 43: type = PNG_FP_SAW_SIGN; break; | |
2582 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; | |
2583 case 46: type = PNG_FP_SAW_DOT; break; | |
2584 case 48: type = PNG_FP_SAW_DIGIT; break; | |
2585 case 49: case 50: case 51: case 52: | |
2586 case 53: case 54: case 55: case 56: | |
2587 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; | |
2588 case 69: | |
2589 case 101: type = PNG_FP_SAW_E; break; | |
2590 default: goto PNG_FP_End; | |
2591 } | |
2592 | |
2593 /* Now deal with this type according to the current | |
2594 * state, the type is arranged to not overlap the | |
2595 * bits of the PNG_FP_STATE. | |
2596 */ | |
2597 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) | |
2598 { | |
2599 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: | |
2600 if (state & PNG_FP_SAW_ANY) | |
2601 goto PNG_FP_End; /* not a part of the number */ | |
2602 | |
2603 png_fp_add(state, type); | |
2604 break; | |
2605 | |
2606 case PNG_FP_INTEGER + PNG_FP_SAW_DOT: | |
2607 /* Ok as trailer, ok as lead of fraction. */ | |
2608 if (state & PNG_FP_SAW_DOT) /* two dots */ | |
2609 goto PNG_FP_End; | |
2610 | |
2611 else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */ | |
2612 png_fp_add(state, type); | |
2613 | |
2614 else | |
2615 png_fp_set(state, PNG_FP_FRACTION | type); | |
2616 | |
2617 break; | |
2618 | |
2619 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: | |
2620 if (state & PNG_FP_SAW_DOT) /* delayed fraction */ | |
2621 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); | |
2622 | |
2623 png_fp_add(state, type | PNG_FP_WAS_VALID); | |
2624 | |
2625 break; | |
2626 | |
2627 case PNG_FP_INTEGER + PNG_FP_SAW_E: | |
2628 if ((state & PNG_FP_SAW_DIGIT) == 0) | |
2629 goto PNG_FP_End; | |
2630 | |
2631 png_fp_set(state, PNG_FP_EXPONENT); | |
2632 | |
2633 break; | |
2634 | |
2635 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: | |
2636 goto PNG_FP_End; ** no sign in fraction */ | |
2637 | |
2638 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: | |
2639 goto PNG_FP_End; ** Because SAW_DOT is always set */ | |
2640 | |
2641 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: | |
2642 png_fp_add(state, type | PNG_FP_WAS_VALID); | |
2643 break; | |
2644 | |
2645 case PNG_FP_FRACTION + PNG_FP_SAW_E: | |
2646 /* This is correct because the trailing '.' on an | |
2647 * integer is handled above - so we can only get here | |
2648 * with the sequence ".E" (with no preceding digits). | |
2649 */ | |
2650 if ((state & PNG_FP_SAW_DIGIT) == 0) | |
2651 goto PNG_FP_End; | |
2652 | |
2653 png_fp_set(state, PNG_FP_EXPONENT); | |
2654 | |
2655 break; | |
2656 | |
2657 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: | |
2658 if (state & PNG_FP_SAW_ANY) | |
2659 goto PNG_FP_End; /* not a part of the number */ | |
2660 | |
2661 png_fp_add(state, PNG_FP_SAW_SIGN); | |
2662 | |
2663 break; | |
2664 | |
2665 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: | |
2666 goto PNG_FP_End; */ | |
2667 | |
2668 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: | |
2669 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); | |
2670 | |
2671 break; | |
2672 | |
2673 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: | |
2674 goto PNG_FP_End; */ | |
2675 | |
2676 default: goto PNG_FP_End; /* I.e. break 2 */ | |
2677 } | |
2678 | |
2679 /* The character seems ok, continue. */ | |
2680 ++i; | |
2681 } | |
2682 | |
2683 PNG_FP_End: | |
2684 /* Here at the end, update the state and return the correct | |
2685 * return code. | |
2686 */ | |
2687 *statep = state; | |
2688 *whereami = i; | |
2689 | |
2690 return (state & PNG_FP_SAW_DIGIT) != 0; | |
2691 } | |
2692 | |
2693 | |
2694 /* The same but for a complete string. */ | |
2695 int | |
2696 png_check_fp_string(png_const_charp string, png_size_t size) | |
2697 { | |
2698 int state=0; | |
2699 png_size_t char_index=0; | |
2700 | |
2701 if (png_check_fp_number(string, size, &state, &char_index) && | |
2702 (char_index == size || string[char_index] == 0)) | |
2703 return state /* must be non-zero - see above */; | |
2704 | |
2705 return 0; /* i.e. fail */ | |
2706 } | |
2707 #endif /* pCAL or sCAL */ | |
2708 | |
2709 #ifdef PNG_sCAL_SUPPORTED | |
2710 # ifdef PNG_FLOATING_POINT_SUPPORTED | |
2711 /* Utility used below - a simple accurate power of ten from an integral | |
2712 * exponent. | |
2713 */ | |
2714 static double | |
2715 png_pow10(int power) | |
2716 { | |
2717 int recip = 0; | |
2718 double d = 1; | |
2719 | |
2720 /* Handle negative exponent with a reciprocal at the end because | |
2721 * 10 is exact whereas .1 is inexact in base 2 | |
2722 */ | |
2723 if (power < 0) | |
2724 { | |
2725 if (power < DBL_MIN_10_EXP) return 0; | |
2726 recip = 1, power = -power; | |
2727 } | |
2728 | |
2729 if (power > 0) | |
2730 { | |
2731 /* Decompose power bitwise. */ | |
2732 double mult = 10; | |
2733 do | |
2734 { | |
2735 if (power & 1) d *= mult; | |
2736 mult *= mult; | |
2737 power >>= 1; | |
2738 } | |
2739 while (power > 0); | |
2740 | |
2741 if (recip) d = 1/d; | |
2742 } | |
2743 /* else power is 0 and d is 1 */ | |
2744 | |
2745 return d; | |
2746 } | |
2747 | |
2748 /* Function to format a floating point value in ASCII with a given | |
2749 * precision. | |
2750 */ | |
2751 void /* PRIVATE */ | |
2752 png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size, | |
2753 double fp, unsigned int precision) | |
2754 { | |
2755 /* We use standard functions from math.h, but not printf because | |
2756 * that would require stdio. The caller must supply a buffer of | |
2757 * sufficient size or we will png_error. The tests on size and | |
2758 * the space in ascii[] consumed are indicated below. | |
2759 */ | |
2760 if (precision < 1) | |
2761 precision = DBL_DIG; | |
2762 | |
2763 /* Enforce the limit of the implementation precision too. */ | |
2764 if (precision > DBL_DIG+1) | |
2765 precision = DBL_DIG+1; | |
2766 | |
2767 /* Basic sanity checks */ | |
2768 if (size >= precision+5) /* See the requirements below. */ | |
2769 { | |
2770 if (fp < 0) | |
2771 { | |
2772 fp = -fp; | |
2773 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ | |
2774 --size; | |
2775 } | |
2776 | |
2777 if (fp >= DBL_MIN && fp <= DBL_MAX) | |
2778 { | |
2779 int exp_b10; /* A base 10 exponent */ | |
2780 double base; /* 10^exp_b10 */ | |
2781 | |
2782 /* First extract a base 10 exponent of the number, | |
2783 * the calculation below rounds down when converting | |
2784 * from base 2 to base 10 (multiply by log10(2) - | |
2785 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to | |
2786 * be increased. Note that the arithmetic shift | |
2787 * performs a floor() unlike C arithmetic - using a | |
2788 * C multiply would break the following for negative | |
2789 * exponents. | |
2790 */ | |
2791 (void)frexp(fp, &exp_b10); /* exponent to base 2 */ | |
2792 | |
2793 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ | |
2794 | |
2795 /* Avoid underflow here. */ | |
2796 base = png_pow10(exp_b10); /* May underflow */ | |
2797 | |
2798 while (base < DBL_MIN || base < fp) | |
2799 { | |
2800 /* And this may overflow. */ | |
2801 double test = png_pow10(exp_b10+1); | |
2802 | |
2803 if (test <= DBL_MAX) | |
2804 ++exp_b10, base = test; | |
2805 | |
2806 else | |
2807 break; | |
2808 } | |
2809 | |
2810 /* Normalize fp and correct exp_b10, after this fp is in the | |
2811 * range [.1,1) and exp_b10 is both the exponent and the digit | |
2812 * *before* which the decimal point should be inserted | |
2813 * (starting with 0 for the first digit). Note that this | |
2814 * works even if 10^exp_b10 is out of range because of the | |
2815 * test on DBL_MAX above. | |
2816 */ | |
2817 fp /= base; | |
2818 while (fp >= 1) fp /= 10, ++exp_b10; | |
2819 | |
2820 /* Because of the code above fp may, at this point, be | |
2821 * less than .1, this is ok because the code below can | |
2822 * handle the leading zeros this generates, so no attempt | |
2823 * is made to correct that here. | |
2824 */ | |
2825 | |
2826 { | |
2827 int czero, clead, cdigits; | |
2828 char exponent[10]; | |
2829 | |
2830 /* Allow up to two leading zeros - this will not lengthen | |
2831 * the number compared to using E-n. | |
2832 */ | |
2833 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ | |
2834 { | |
2835 czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */ | |
2836 exp_b10 = 0; /* Dot added below before first output. */ | |
2837 } | |
2838 else | |
2839 czero = 0; /* No zeros to add */ | |
2840 | |
2841 /* Generate the digit list, stripping trailing zeros and | |
2842 * inserting a '.' before a digit if the exponent is 0. | |
2843 */ | |
2844 clead = czero; /* Count of leading zeros */ | |
2845 cdigits = 0; /* Count of digits in list. */ | |
2846 | |
2847 do | |
2848 { | |
2849 double d; | |
2850 | |
2851 fp *= 10; | |
2852 /* Use modf here, not floor and subtract, so that | |
2853 * the separation is done in one step. At the end | |
2854 * of the loop don't break the number into parts so | |
2855 * that the final digit is rounded. | |
2856 */ | |
2857 if (cdigits+czero-clead+1 < (int)precision) | |
2858 fp = modf(fp, &d); | |
2859 | |
2860 else | |
2861 { | |
2862 d = floor(fp + .5); | |
2863 | |
2864 if (d > 9) | |
2865 { | |
2866 /* Rounding up to 10, handle that here. */ | |
2867 if (czero > 0) | |
2868 { | |
2869 --czero, d = 1; | |
2870 if (cdigits == 0) --clead; | |
2871 } | |
2872 else | |
2873 { | |
2874 while (cdigits > 0 && d > 9) | |
2875 { | |
2876 int ch = *--ascii; | |
2877 | |
2878 if (exp_b10 != (-1)) | |
2879 ++exp_b10; | |
2880 | |
2881 else if (ch == 46) | |
2882 { | |
2883 ch = *--ascii, ++size; | |
2884 /* Advance exp_b10 to '1', so that the | |
2885 * decimal point happens after the | |
2886 * previous digit. | |
2887 */ | |
2888 exp_b10 = 1; | |
2889 } | |
2890 | |
2891 --cdigits; | |
2892 d = ch - 47; /* I.e. 1+(ch-48) */ | |
2893 } | |
2894 | |
2895 /* Did we reach the beginning? If so adjust the | |
2896 * exponent but take into account the leading | |
2897 * decimal point. | |
2898 */ | |
2899 if (d > 9) /* cdigits == 0 */ | |
2900 { | |
2901 if (exp_b10 == (-1)) | |
2902 { | |
2903 /* Leading decimal point (plus zeros?), if | |
2904 * we lose the decimal point here it must | |
2905 * be reentered below. | |
2906 */ | |
2907 int ch = *--ascii; | |
2908 | |
2909 if (ch == 46) | |
2910 ++size, exp_b10 = 1; | |
2911 | |
2912 /* Else lost a leading zero, so 'exp_b10' is | |
2913 * still ok at (-1) | |
2914 */ | |
2915 } | |
2916 else | |
2917 ++exp_b10; | |
2918 | |
2919 /* In all cases we output a '1' */ | |
2920 d = 1; | |
2921 } | |
2922 } | |
2923 } | |
2924 fp = 0; /* Guarantees termination below. */ | |
2925 } | |
2926 | |
2927 if (d == 0) | |
2928 { | |
2929 ++czero; | |
2930 if (cdigits == 0) ++clead; | |
2931 } | |
2932 else | |
2933 { | |
2934 /* Included embedded zeros in the digit count. */ | |
2935 cdigits += czero - clead; | |
2936 clead = 0; | |
2937 | |
2938 while (czero > 0) | |
2939 { | |
2940 /* exp_b10 == (-1) means we just output the decimal | |
2941 * place - after the DP don't adjust 'exp_b10' any | |
2942 * more! | |
2943 */ | |
2944 if (exp_b10 != (-1)) | |
2945 { | |
2946 if (exp_b10 == 0) *ascii++ = 46, --size; | |
2947 /* PLUS 1: TOTAL 4 */ | |
2948 --exp_b10; | |
2949 } | |
2950 *ascii++ = 48, --czero; | |
2951 } | |
2952 | |
2953 if (exp_b10 != (-1)) | |
2954 { | |
2955 if (exp_b10 == 0) *ascii++ = 46, --size; /* counted | |
2956 above */ | |
2957 --exp_b10; | |
2958 } | |
2959 *ascii++ = (char)(48 + (int)d), ++cdigits; | |
2960 } | |
2961 } | |
2962 while (cdigits+czero-clead < (int)precision && fp > DBL_MIN); | |
2963 | |
2964 /* The total output count (max) is now 4+precision */ | |
2965 | |
2966 /* Check for an exponent, if we don't need one we are | |
2967 * done and just need to terminate the string. At | |
2968 * this point exp_b10==(-1) is effectively if flag - it got | |
2969 * to '-1' because of the decrement after outputing | |
2970 * the decimal point above (the exponent required is | |
2971 * *not* -1!) | |
2972 */ | |
2973 if (exp_b10 >= (-1) && exp_b10 <= 2) | |
2974 { | |
2975 /* The following only happens if we didn't output the | |
2976 * leading zeros above for negative exponent, so this | |
2977 * doest add to the digit requirement. Note that the | |
2978 * two zeros here can only be output if the two leading | |
2979 * zeros were *not* output, so this doesn't increase | |
2980 * the output count. | |
2981 */ | |
2982 while (--exp_b10 >= 0) *ascii++ = 48; | |
2983 | |
2984 *ascii = 0; | |
2985 | |
2986 /* Total buffer requirement (including the '\0') is | |
2987 * 5+precision - see check at the start. | |
2988 */ | |
2989 return; | |
2990 } | |
2991 | |
2992 /* Here if an exponent is required, adjust size for | |
2993 * the digits we output but did not count. The total | |
2994 * digit output here so far is at most 1+precision - no | |
2995 * decimal point and no leading or trailing zeros have | |
2996 * been output. | |
2997 */ | |
2998 size -= cdigits; | |
2999 | |
3000 *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ | |
3001 | |
3002 /* The following use of an unsigned temporary avoids ambiguities in | |
3003 * the signed arithmetic on exp_b10 and permits GCC at least to do | |
3004 * better optimization. | |
3005 */ | |
3006 { | |
3007 unsigned int uexp_b10; | |
3008 | |
3009 if (exp_b10 < 0) | |
3010 { | |
3011 *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ | |
3012 uexp_b10 = -exp_b10; | |
3013 } | |
3014 | |
3015 else | |
3016 uexp_b10 = exp_b10; | |
3017 | |
3018 cdigits = 0; | |
3019 | |
3020 while (uexp_b10 > 0) | |
3021 { | |
3022 exponent[cdigits++] = (char)(48 + uexp_b10 % 10); | |
3023 uexp_b10 /= 10; | |
3024 } | |
3025 } | |
3026 | |
3027 /* Need another size check here for the exponent digits, so | |
3028 * this need not be considered above. | |
3029 */ | |
3030 if ((int)size > cdigits) | |
3031 { | |
3032 while (cdigits > 0) *ascii++ = exponent[--cdigits]; | |
3033 | |
3034 *ascii = 0; | |
3035 | |
3036 return; | |
3037 } | |
3038 } | |
3039 } | |
3040 else if (!(fp >= DBL_MIN)) | |
3041 { | |
3042 *ascii++ = 48; /* '0' */ | |
3043 *ascii = 0; | |
3044 return; | |
3045 } | |
3046 else | |
3047 { | |
3048 *ascii++ = 105; /* 'i' */ | |
3049 *ascii++ = 110; /* 'n' */ | |
3050 *ascii++ = 102; /* 'f' */ | |
3051 *ascii = 0; | |
3052 return; | |
3053 } | |
3054 } | |
3055 | |
3056 /* Here on buffer too small. */ | |
3057 png_error(png_ptr, "ASCII conversion buffer too small"); | |
3058 } | |
3059 | |
3060 # endif /* FLOATING_POINT */ | |
3061 | |
3062 # ifdef PNG_FIXED_POINT_SUPPORTED | |
3063 /* Function to format a fixed point value in ASCII. | |
3064 */ | |
3065 void /* PRIVATE */ | |
3066 png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii, | |
3067 png_size_t size, png_fixed_point fp) | |
3068 { | |
3069 /* Require space for 10 decimal digits, a decimal point, a minus sign and a | |
3070 * trailing \0, 13 characters: | |
3071 */ | |
3072 if (size > 12) | |
3073 { | |
3074 png_uint_32 num; | |
3075 | |
3076 /* Avoid overflow here on the minimum integer. */ | |
3077 if (fp < 0) | |
3078 *ascii++ = 45, --size, num = -fp; | |
3079 else | |
3080 num = fp; | |
3081 | |
3082 if (num <= 0x80000000) /* else overflowed */ | |
3083 { | |
3084 unsigned int ndigits = 0, first = 16 /* flag value */; | |
3085 char digits[10]; | |
3086 | |
3087 while (num) | |
3088 { | |
3089 /* Split the low digit off num: */ | |
3090 unsigned int tmp = num/10; | |
3091 num -= tmp*10; | |
3092 digits[ndigits++] = (char)(48 + num); | |
3093 /* Record the first non-zero digit, note that this is a number | |
3094 * starting at 1, it's not actually the array index. | |
3095 */ | |
3096 if (first == 16 && num > 0) | |
3097 first = ndigits; | |
3098 num = tmp; | |
3099 } | |
3100 | |
3101 if (ndigits > 0) | |
3102 { | |
3103 while (ndigits > 5) *ascii++ = digits[--ndigits]; | |
3104 /* The remaining digits are fractional digits, ndigits is '5' or | |
3105 * smaller at this point. It is certainly not zero. Check for a | |
3106 * non-zero fractional digit: | |
3107 */ | |
3108 if (first <= 5) | |
3109 { | |
3110 unsigned int i; | |
3111 *ascii++ = 46; /* decimal point */ | |
3112 /* ndigits may be <5 for small numbers, output leading zeros | |
3113 * then ndigits digits to first: | |
3114 */ | |
3115 i = 5; | |
3116 while (ndigits < i) *ascii++ = 48, --i; | |
3117 while (ndigits >= first) *ascii++ = digits[--ndigits]; | |
3118 /* Don't output the trailing zeros! */ | |
3119 } | |
3120 } | |
3121 else | |
3122 *ascii++ = 48; | |
3123 | |
3124 /* And null terminate the string: */ | |
3125 *ascii = 0; | |
3126 return; | |
3127 } | |
3128 } | |
3129 | |
3130 /* Here on buffer too small. */ | |
3131 png_error(png_ptr, "ASCII conversion buffer too small"); | |
3132 } | |
3133 # endif /* FIXED_POINT */ | |
3134 #endif /* READ_SCAL */ | |
3135 | |
3136 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ | |
3137 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \ | |
3138 (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \ | |
3139 defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
3140 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \ | |
3141 (defined(PNG_sCAL_SUPPORTED) && \ | |
3142 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED)) | |
3143 png_fixed_point | |
3144 png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text) | |
3145 { | |
3146 double r = floor(100000 * fp + .5); | |
3147 | |
3148 if (r > 2147483647. || r < -2147483648.) | |
3149 png_fixed_error(png_ptr, text); | |
3150 | |
3151 # ifndef PNG_ERROR_TEXT_SUPPORTED | |
3152 PNG_UNUSED(text) | |
3153 # endif | |
3154 | |
3155 return (png_fixed_point)r; | |
3156 } | |
3157 #endif | |
3158 | |
3159 #if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\ | |
3160 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED) | |
3161 /* muldiv functions */ | |
3162 /* This API takes signed arguments and rounds the result to the nearest | |
3163 * integer (or, for a fixed point number - the standard argument - to | |
3164 * the nearest .00001). Overflow and divide by zero are signalled in | |
3165 * the result, a boolean - true on success, false on overflow. | |
3166 */ | |
3167 int | |
3168 png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, | |
3169 png_int_32 divisor) | |
3170 { | |
3171 /* Return a * times / divisor, rounded. */ | |
3172 if (divisor != 0) | |
3173 { | |
3174 if (a == 0 || times == 0) | |
3175 { | |
3176 *res = 0; | |
3177 return 1; | |
3178 } | |
3179 else | |
3180 { | |
3181 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3182 double r = a; | |
3183 r *= times; | |
3184 r /= divisor; | |
3185 r = floor(r+.5); | |
3186 | |
3187 /* A png_fixed_point is a 32-bit integer. */ | |
3188 if (r <= 2147483647. && r >= -2147483648.) | |
3189 { | |
3190 *res = (png_fixed_point)r; | |
3191 return 1; | |
3192 } | |
3193 #else | |
3194 int negative = 0; | |
3195 png_uint_32 A, T, D; | |
3196 png_uint_32 s16, s32, s00; | |
3197 | |
3198 if (a < 0) | |
3199 negative = 1, A = -a; | |
3200 else | |
3201 A = a; | |
3202 | |
3203 if (times < 0) | |
3204 negative = !negative, T = -times; | |
3205 else | |
3206 T = times; | |
3207 | |
3208 if (divisor < 0) | |
3209 negative = !negative, D = -divisor; | |
3210 else | |
3211 D = divisor; | |
3212 | |
3213 /* Following can't overflow because the arguments only | |
3214 * have 31 bits each, however the result may be 32 bits. | |
3215 */ | |
3216 s16 = (A >> 16) * (T & 0xffff) + | |
3217 (A & 0xffff) * (T >> 16); | |
3218 /* Can't overflow because the a*times bit is only 30 | |
3219 * bits at most. | |
3220 */ | |
3221 s32 = (A >> 16) * (T >> 16) + (s16 >> 16); | |
3222 s00 = (A & 0xffff) * (T & 0xffff); | |
3223 | |
3224 s16 = (s16 & 0xffff) << 16; | |
3225 s00 += s16; | |
3226 | |
3227 if (s00 < s16) | |
3228 ++s32; /* carry */ | |
3229 | |
3230 if (s32 < D) /* else overflow */ | |
3231 { | |
3232 /* s32.s00 is now the 64-bit product, do a standard | |
3233 * division, we know that s32 < D, so the maximum | |
3234 * required shift is 31. | |
3235 */ | |
3236 int bitshift = 32; | |
3237 png_fixed_point result = 0; /* NOTE: signed */ | |
3238 | |
3239 while (--bitshift >= 0) | |
3240 { | |
3241 png_uint_32 d32, d00; | |
3242 | |
3243 if (bitshift > 0) | |
3244 d32 = D >> (32-bitshift), d00 = D << bitshift; | |
3245 | |
3246 else | |
3247 d32 = 0, d00 = D; | |
3248 | |
3249 if (s32 > d32) | |
3250 { | |
3251 if (s00 < d00) --s32; /* carry */ | |
3252 s32 -= d32, s00 -= d00, result += 1<<bitshift; | |
3253 } | |
3254 | |
3255 else | |
3256 if (s32 == d32 && s00 >= d00) | |
3257 s32 = 0, s00 -= d00, result += 1<<bitshift; | |
3258 } | |
3259 | |
3260 /* Handle the rounding. */ | |
3261 if (s00 >= (D >> 1)) | |
3262 ++result; | |
3263 | |
3264 if (negative) | |
3265 result = -result; | |
3266 | |
3267 /* Check for overflow. */ | |
3268 if ((negative && result <= 0) || (!negative && result >= 0)) | |
3269 { | |
3270 *res = result; | |
3271 return 1; | |
3272 } | |
3273 } | |
3274 #endif | |
3275 } | |
3276 } | |
3277 | |
3278 return 0; | |
3279 } | |
3280 #endif /* READ_GAMMA || INCH_CONVERSIONS */ | |
3281 | |
3282 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) | |
3283 /* The following is for when the caller doesn't much care about the | |
3284 * result. | |
3285 */ | |
3286 png_fixed_point | |
3287 png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times, | |
3288 png_int_32 divisor) | |
3289 { | |
3290 png_fixed_point result; | |
3291 | |
3292 if (png_muldiv(&result, a, times, divisor)) | |
3293 return result; | |
3294 | |
3295 png_warning(png_ptr, "fixed point overflow ignored"); | |
3296 return 0; | |
3297 } | |
3298 #endif | |
3299 | |
3300 #ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */ | |
3301 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ | |
3302 png_fixed_point | |
3303 png_reciprocal(png_fixed_point a) | |
3304 { | |
3305 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3306 double r = floor(1E10/a+.5); | |
3307 | |
3308 if (r <= 2147483647. && r >= -2147483648.) | |
3309 return (png_fixed_point)r; | |
3310 #else | |
3311 png_fixed_point res; | |
3312 | |
3313 if (png_muldiv(&res, 100000, 100000, a)) | |
3314 return res; | |
3315 #endif | |
3316 | |
3317 return 0; /* error/overflow */ | |
3318 } | |
3319 | |
3320 /* This is the shared test on whether a gamma value is 'significant' - whether | |
3321 * it is worth doing gamma correction. | |
3322 */ | |
3323 int /* PRIVATE */ | |
3324 png_gamma_significant(png_fixed_point gamma_val) | |
3325 { | |
3326 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || | |
3327 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; | |
3328 } | |
3329 #endif | |
3330 | |
3331 #ifdef PNG_READ_GAMMA_SUPPORTED | |
3332 # ifdef PNG_16BIT_SUPPORTED | |
3333 /* A local convenience routine. */ | |
3334 static png_fixed_point | |
3335 png_product2(png_fixed_point a, png_fixed_point b) | |
3336 { | |
3337 /* The required result is 1/a * 1/b; the following preserves accuracy. */ | |
3338 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3339 double r = a * 1E-5; | |
3340 r *= b; | |
3341 r = floor(r+.5); | |
3342 | |
3343 if (r <= 2147483647. && r >= -2147483648.) | |
3344 return (png_fixed_point)r; | |
3345 # else | |
3346 png_fixed_point res; | |
3347 | |
3348 if (png_muldiv(&res, a, b, 100000)) | |
3349 return res; | |
3350 # endif | |
3351 | |
3352 return 0; /* overflow */ | |
3353 } | |
3354 # endif /* 16BIT */ | |
3355 | |
3356 /* The inverse of the above. */ | |
3357 png_fixed_point | |
3358 png_reciprocal2(png_fixed_point a, png_fixed_point b) | |
3359 { | |
3360 /* The required result is 1/a * 1/b; the following preserves accuracy. */ | |
3361 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3362 double r = 1E15/a; | |
3363 r /= b; | |
3364 r = floor(r+.5); | |
3365 | |
3366 if (r <= 2147483647. && r >= -2147483648.) | |
3367 return (png_fixed_point)r; | |
3368 #else | |
3369 /* This may overflow because the range of png_fixed_point isn't symmetric, | |
3370 * but this API is only used for the product of file and screen gamma so it | |
3371 * doesn't matter that the smallest number it can produce is 1/21474, not | |
3372 * 1/100000 | |
3373 */ | |
3374 png_fixed_point res = png_product2(a, b); | |
3375 | |
3376 if (res != 0) | |
3377 return png_reciprocal(res); | |
3378 #endif | |
3379 | |
3380 return 0; /* overflow */ | |
3381 } | |
3382 #endif /* READ_GAMMA */ | |
3383 | |
3384 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ | |
3385 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3386 /* Fixed point gamma. | |
3387 * | |
3388 * The code to calculate the tables used below can be found in the shell script | |
3389 * contrib/tools/intgamma.sh | |
3390 * | |
3391 * To calculate gamma this code implements fast log() and exp() calls using only | |
3392 * fixed point arithmetic. This code has sufficient precision for either 8-bit | |
3393 * or 16-bit sample values. | |
3394 * | |
3395 * The tables used here were calculated using simple 'bc' programs, but C double | |
3396 * precision floating point arithmetic would work fine. | |
3397 * | |
3398 * 8-bit log table | |
3399 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to | |
3400 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point | |
3401 * mantissa. The numbers are 32-bit fractions. | |
3402 */ | |
3403 static const png_uint_32 | |
3404 png_8bit_l2[128] = | |
3405 { | |
3406 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, | |
3407 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, | |
3408 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, | |
3409 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, | |
3410 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, | |
3411 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, | |
3412 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, | |
3413 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, | |
3414 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, | |
3415 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, | |
3416 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, | |
3417 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, | |
3418 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, | |
3419 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, | |
3420 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, | |
3421 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, | |
3422 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, | |
3423 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, | |
3424 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, | |
3425 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, | |
3426 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, | |
3427 24347096U, 0U | |
3428 | |
3429 #if 0 | |
3430 /* The following are the values for 16-bit tables - these work fine for the | |
3431 * 8-bit conversions but produce very slightly larger errors in the 16-bit | |
3432 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To | |
3433 * use these all the shifts below must be adjusted appropriately. | |
3434 */ | |
3435 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, | |
3436 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, | |
3437 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, | |
3438 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, | |
3439 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, | |
3440 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, | |
3441 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, | |
3442 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, | |
3443 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, | |
3444 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, | |
3445 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, | |
3446 1119, 744, 372 | |
3447 #endif | |
3448 }; | |
3449 | |
3450 static png_int_32 | |
3451 png_log8bit(unsigned int x) | |
3452 { | |
3453 unsigned int lg2 = 0; | |
3454 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, | |
3455 * because the log is actually negate that means adding 1. The final | |
3456 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 | |
3457 * input), return -1 for the overflow (log 0) case, - so the result is | |
3458 * always at most 19 bits. | |
3459 */ | |
3460 if ((x &= 0xff) == 0) | |
3461 return -1; | |
3462 | |
3463 if ((x & 0xf0) == 0) | |
3464 lg2 = 4, x <<= 4; | |
3465 | |
3466 if ((x & 0xc0) == 0) | |
3467 lg2 += 2, x <<= 2; | |
3468 | |
3469 if ((x & 0x80) == 0) | |
3470 lg2 += 1, x <<= 1; | |
3471 | |
3472 /* result is at most 19 bits, so this cast is safe: */ | |
3473 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); | |
3474 } | |
3475 | |
3476 /* The above gives exact (to 16 binary places) log2 values for 8-bit images, | |
3477 * for 16-bit images we use the most significant 8 bits of the 16-bit value to | |
3478 * get an approximation then multiply the approximation by a correction factor | |
3479 * determined by the remaining up to 8 bits. This requires an additional step | |
3480 * in the 16-bit case. | |
3481 * | |
3482 * We want log2(value/65535), we have log2(v'/255), where: | |
3483 * | |
3484 * value = v' * 256 + v'' | |
3485 * = v' * f | |
3486 * | |
3487 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 | |
3488 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less | |
3489 * than 258. The final factor also needs to correct for the fact that our 8-bit | |
3490 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. | |
3491 * | |
3492 * This gives a final formula using a calculated value 'x' which is value/v' and | |
3493 * scaling by 65536 to match the above table: | |
3494 * | |
3495 * log2(x/257) * 65536 | |
3496 * | |
3497 * Since these numbers are so close to '1' we can use simple linear | |
3498 * interpolation between the two end values 256/257 (result -368.61) and 258/257 | |
3499 * (result 367.179). The values used below are scaled by a further 64 to give | |
3500 * 16-bit precision in the interpolation: | |
3501 * | |
3502 * Start (256): -23591 | |
3503 * Zero (257): 0 | |
3504 * End (258): 23499 | |
3505 */ | |
3506 static png_int_32 | |
3507 png_log16bit(png_uint_32 x) | |
3508 { | |
3509 unsigned int lg2 = 0; | |
3510 | |
3511 /* As above, but now the input has 16 bits. */ | |
3512 if ((x &= 0xffff) == 0) | |
3513 return -1; | |
3514 | |
3515 if ((x & 0xff00) == 0) | |
3516 lg2 = 8, x <<= 8; | |
3517 | |
3518 if ((x & 0xf000) == 0) | |
3519 lg2 += 4, x <<= 4; | |
3520 | |
3521 if ((x & 0xc000) == 0) | |
3522 lg2 += 2, x <<= 2; | |
3523 | |
3524 if ((x & 0x8000) == 0) | |
3525 lg2 += 1, x <<= 1; | |
3526 | |
3527 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional | |
3528 * value. | |
3529 */ | |
3530 lg2 <<= 28; | |
3531 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; | |
3532 | |
3533 /* Now we need to interpolate the factor, this requires a division by the top | |
3534 * 8 bits. Do this with maximum precision. | |
3535 */ | |
3536 x = ((x << 16) + (x >> 9)) / (x >> 8); | |
3537 | |
3538 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, | |
3539 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly | |
3540 * 16 bits to interpolate to get the low bits of the result. Round the | |
3541 * answer. Note that the end point values are scaled by 64 to retain overall | |
3542 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust | |
3543 * the overall scaling by 6-12. Round at every step. | |
3544 */ | |
3545 x -= 1U << 24; | |
3546 | |
3547 if (x <= 65536U) /* <= '257' */ | |
3548 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); | |
3549 | |
3550 else | |
3551 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); | |
3552 | |
3553 /* Safe, because the result can't have more than 20 bits: */ | |
3554 return (png_int_32)((lg2 + 2048) >> 12); | |
3555 } | |
3556 | |
3557 /* The 'exp()' case must invert the above, taking a 20-bit fixed point | |
3558 * logarithmic value and returning a 16 or 8-bit number as appropriate. In | |
3559 * each case only the low 16 bits are relevant - the fraction - since the | |
3560 * integer bits (the top 4) simply determine a shift. | |
3561 * | |
3562 * The worst case is the 16-bit distinction between 65535 and 65534, this | |
3563 * requires perhaps spurious accuracty in the decoding of the logarithm to | |
3564 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance | |
3565 * of getting this accuracy in practice. | |
3566 * | |
3567 * To deal with this the following exp() function works out the exponent of the | |
3568 * frational part of the logarithm by using an accurate 32-bit value from the | |
3569 * top four fractional bits then multiplying in the remaining bits. | |
3570 */ | |
3571 static const png_uint_32 | |
3572 png_32bit_exp[16] = | |
3573 { | |
3574 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ | |
3575 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, | |
3576 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, | |
3577 2553802834U, 2445529972U, 2341847524U, 2242560872U | |
3578 }; | |
3579 | |
3580 /* Adjustment table; provided to explain the numbers in the code below. */ | |
3581 #if 0 | |
3582 for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} | |
3583 11 44937.64284865548751208448 | |
3584 10 45180.98734845585101160448 | |
3585 9 45303.31936980687359311872 | |
3586 8 45364.65110595323018870784 | |
3587 7 45395.35850361789624614912 | |
3588 6 45410.72259715102037508096 | |
3589 5 45418.40724413220722311168 | |
3590 4 45422.25021786898173001728 | |
3591 3 45424.17186732298419044352 | |
3592 2 45425.13273269940811464704 | |
3593 1 45425.61317555035558641664 | |
3594 0 45425.85339951654943850496 | |
3595 #endif | |
3596 | |
3597 static png_uint_32 | |
3598 png_exp(png_fixed_point x) | |
3599 { | |
3600 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ | |
3601 { | |
3602 /* Obtain a 4-bit approximation */ | |
3603 png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; | |
3604 | |
3605 /* Incorporate the low 12 bits - these decrease the returned value by | |
3606 * multiplying by a number less than 1 if the bit is set. The multiplier | |
3607 * is determined by the above table and the shift. Notice that the values | |
3608 * converge on 45426 and this is used to allow linear interpolation of the | |
3609 * low bits. | |
3610 */ | |
3611 if (x & 0x800) | |
3612 e -= (((e >> 16) * 44938U) + 16U) >> 5; | |
3613 | |
3614 if (x & 0x400) | |
3615 e -= (((e >> 16) * 45181U) + 32U) >> 6; | |
3616 | |
3617 if (x & 0x200) | |
3618 e -= (((e >> 16) * 45303U) + 64U) >> 7; | |
3619 | |
3620 if (x & 0x100) | |
3621 e -= (((e >> 16) * 45365U) + 128U) >> 8; | |
3622 | |
3623 if (x & 0x080) | |
3624 e -= (((e >> 16) * 45395U) + 256U) >> 9; | |
3625 | |
3626 if (x & 0x040) | |
3627 e -= (((e >> 16) * 45410U) + 512U) >> 10; | |
3628 | |
3629 /* And handle the low 6 bits in a single block. */ | |
3630 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; | |
3631 | |
3632 /* Handle the upper bits of x. */ | |
3633 e >>= x >> 16; | |
3634 return e; | |
3635 } | |
3636 | |
3637 /* Check for overflow */ | |
3638 if (x <= 0) | |
3639 return png_32bit_exp[0]; | |
3640 | |
3641 /* Else underflow */ | |
3642 return 0; | |
3643 } | |
3644 | |
3645 static png_byte | |
3646 png_exp8bit(png_fixed_point lg2) | |
3647 { | |
3648 /* Get a 32-bit value: */ | |
3649 png_uint_32 x = png_exp(lg2); | |
3650 | |
3651 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the | |
3652 * second, rounding, step can't overflow because of the first, subtraction, | |
3653 * step. | |
3654 */ | |
3655 x -= x >> 8; | |
3656 return (png_byte)((x + 0x7fffffU) >> 24); | |
3657 } | |
3658 | |
3659 #ifdef PNG_16BIT_SUPPORTED | |
3660 static png_uint_16 | |
3661 png_exp16bit(png_fixed_point lg2) | |
3662 { | |
3663 /* Get a 32-bit value: */ | |
3664 png_uint_32 x = png_exp(lg2); | |
3665 | |
3666 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ | |
3667 x -= x >> 16; | |
3668 return (png_uint_16)((x + 32767U) >> 16); | |
3669 } | |
3670 #endif /* 16BIT */ | |
3671 #endif /* FLOATING_ARITHMETIC */ | |
3672 | |
3673 png_byte | |
3674 png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) | |
3675 { | |
3676 if (value > 0 && value < 255) | |
3677 { | |
3678 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3679 double r = floor(255*pow(value/255.,gamma_val*.00001)+.5); | |
3680 return (png_byte)r; | |
3681 # else | |
3682 png_int_32 lg2 = png_log8bit(value); | |
3683 png_fixed_point res; | |
3684 | |
3685 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) | |
3686 return png_exp8bit(res); | |
3687 | |
3688 /* Overflow. */ | |
3689 value = 0; | |
3690 # endif | |
3691 } | |
3692 | |
3693 return (png_byte)value; | |
3694 } | |
3695 | |
3696 #ifdef PNG_16BIT_SUPPORTED | |
3697 png_uint_16 | |
3698 png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) | |
3699 { | |
3700 if (value > 0 && value < 65535) | |
3701 { | |
3702 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3703 double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5); | |
3704 return (png_uint_16)r; | |
3705 # else | |
3706 png_int_32 lg2 = png_log16bit(value); | |
3707 png_fixed_point res; | |
3708 | |
3709 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) | |
3710 return png_exp16bit(res); | |
3711 | |
3712 /* Overflow. */ | |
3713 value = 0; | |
3714 # endif | |
3715 } | |
3716 | |
3717 return (png_uint_16)value; | |
3718 } | |
3719 #endif /* 16BIT */ | |
3720 | |
3721 /* This does the right thing based on the bit_depth field of the | |
3722 * png_struct, interpreting values as 8-bit or 16-bit. While the result | |
3723 * is nominally a 16-bit value if bit depth is 8 then the result is | |
3724 * 8-bit (as are the arguments.) | |
3725 */ | |
3726 png_uint_16 /* PRIVATE */ | |
3727 png_gamma_correct(png_structrp png_ptr, unsigned int value, | |
3728 png_fixed_point gamma_val) | |
3729 { | |
3730 if (png_ptr->bit_depth == 8) | |
3731 return png_gamma_8bit_correct(value, gamma_val); | |
3732 | |
3733 #ifdef PNG_16BIT_SUPPORTED | |
3734 else | |
3735 return png_gamma_16bit_correct(value, gamma_val); | |
3736 #else | |
3737 /* should not reach this */ | |
3738 return 0; | |
3739 #endif /* 16BIT */ | |
3740 } | |
3741 | |
3742 #ifdef PNG_16BIT_SUPPORTED | |
3743 /* Internal function to build a single 16-bit table - the table consists of | |
3744 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount | |
3745 * to shift the input values right (or 16-number_of_signifiant_bits). | |
3746 * | |
3747 * The caller is responsible for ensuring that the table gets cleaned up on | |
3748 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument | |
3749 * should be somewhere that will be cleaned. | |
3750 */ | |
3751 static void | |
3752 png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable, | |
3753 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) | |
3754 { | |
3755 /* Various values derived from 'shift': */ | |
3756 PNG_CONST unsigned int num = 1U << (8U - shift); | |
3757 PNG_CONST unsigned int max = (1U << (16U - shift))-1U; | |
3758 PNG_CONST unsigned int max_by_2 = 1U << (15U-shift); | |
3759 unsigned int i; | |
3760 | |
3761 png_uint_16pp table = *ptable = | |
3762 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); | |
3763 | |
3764 for (i = 0; i < num; i++) | |
3765 { | |
3766 png_uint_16p sub_table = table[i] = | |
3767 (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16))); | |
3768 | |
3769 /* The 'threshold' test is repeated here because it can arise for one of | |
3770 * the 16-bit tables even if the others don't hit it. | |
3771 */ | |
3772 if (png_gamma_significant(gamma_val)) | |
3773 { | |
3774 /* The old code would overflow at the end and this would cause the | |
3775 * 'pow' function to return a result >1, resulting in an | |
3776 * arithmetic error. This code follows the spec exactly; ig is | |
3777 * the recovered input sample, it always has 8-16 bits. | |
3778 * | |
3779 * We want input * 65535/max, rounded, the arithmetic fits in 32 | |
3780 * bits (unsigned) so long as max <= 32767. | |
3781 */ | |
3782 unsigned int j; | |
3783 for (j = 0; j < 256; j++) | |
3784 { | |
3785 png_uint_32 ig = (j << (8-shift)) + i; | |
3786 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
3787 /* Inline the 'max' scaling operation: */ | |
3788 double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5); | |
3789 sub_table[j] = (png_uint_16)d; | |
3790 # else | |
3791 if (shift) | |
3792 ig = (ig * 65535U + max_by_2)/max; | |
3793 | |
3794 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); | |
3795 # endif | |
3796 } | |
3797 } | |
3798 else | |
3799 { | |
3800 /* We must still build a table, but do it the fast way. */ | |
3801 unsigned int j; | |
3802 | |
3803 for (j = 0; j < 256; j++) | |
3804 { | |
3805 png_uint_32 ig = (j << (8-shift)) + i; | |
3806 | |
3807 if (shift) | |
3808 ig = (ig * 65535U + max_by_2)/max; | |
3809 | |
3810 sub_table[j] = (png_uint_16)ig; | |
3811 } | |
3812 } | |
3813 } | |
3814 } | |
3815 | |
3816 /* NOTE: this function expects the *inverse* of the overall gamma transformation | |
3817 * required. | |
3818 */ | |
3819 static void | |
3820 png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable, | |
3821 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) | |
3822 { | |
3823 PNG_CONST unsigned int num = 1U << (8U - shift); | |
3824 PNG_CONST unsigned int max = (1U << (16U - shift))-1U; | |
3825 unsigned int i; | |
3826 png_uint_32 last; | |
3827 | |
3828 png_uint_16pp table = *ptable = | |
3829 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p))); | |
3830 | |
3831 /* 'num' is the number of tables and also the number of low bits of low | |
3832 * bits of the input 16-bit value used to select a table. Each table is | |
3833 * itself index by the high 8 bits of the value. | |
3834 */ | |
3835 for (i = 0; i < num; i++) | |
3836 table[i] = (png_uint_16p)png_malloc(png_ptr, | |
3837 256 * (sizeof (png_uint_16))); | |
3838 | |
3839 /* 'gamma_val' is set to the reciprocal of the value calculated above, so | |
3840 * pow(out,g) is an *input* value. 'last' is the last input value set. | |
3841 * | |
3842 * In the loop 'i' is used to find output values. Since the output is | |
3843 * 8-bit there are only 256 possible values. The tables are set up to | |
3844 * select the closest possible output value for each input by finding | |
3845 * the input value at the boundary between each pair of output values | |
3846 * and filling the table up to that boundary with the lower output | |
3847 * value. | |
3848 * | |
3849 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit | |
3850 * values the code below uses a 16-bit value in i; the values start at | |
3851 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last | |
3852 * entries are filled with 255). Start i at 128 and fill all 'last' | |
3853 * table entries <= 'max' | |
3854 */ | |
3855 last = 0; | |
3856 for (i = 0; i < 255; ++i) /* 8-bit output value */ | |
3857 { | |
3858 /* Find the corresponding maximum input value */ | |
3859 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ | |
3860 | |
3861 /* Find the boundary value in 16 bits: */ | |
3862 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); | |
3863 | |
3864 /* Adjust (round) to (16-shift) bits: */ | |
3865 bound = (bound * max + 32768U)/65535U + 1U; | |
3866 | |
3867 while (last < bound) | |
3868 { | |
3869 table[last & (0xffU >> shift)][last >> (8U - shift)] = out; | |
3870 last++; | |
3871 } | |
3872 } | |
3873 | |
3874 /* And fill in the final entries. */ | |
3875 while (last < (num << 8)) | |
3876 { | |
3877 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; | |
3878 last++; | |
3879 } | |
3880 } | |
3881 #endif /* 16BIT */ | |
3882 | |
3883 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and | |
3884 * typically much faster). Note that libpng currently does no sBIT processing | |
3885 * (apparently contrary to the spec) so a 256 entry table is always generated. | |
3886 */ | |
3887 static void | |
3888 png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable, | |
3889 PNG_CONST png_fixed_point gamma_val) | |
3890 { | |
3891 unsigned int i; | |
3892 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); | |
3893 | |
3894 if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++) | |
3895 table[i] = png_gamma_8bit_correct(i, gamma_val); | |
3896 | |
3897 else for (i=0; i<256; ++i) | |
3898 table[i] = (png_byte)i; | |
3899 } | |
3900 | |
3901 /* Used from png_read_destroy and below to release the memory used by the gamma | |
3902 * tables. | |
3903 */ | |
3904 void /* PRIVATE */ | |
3905 png_destroy_gamma_table(png_structrp png_ptr) | |
3906 { | |
3907 png_free(png_ptr, png_ptr->gamma_table); | |
3908 png_ptr->gamma_table = NULL; | |
3909 | |
3910 #ifdef PNG_16BIT_SUPPORTED | |
3911 if (png_ptr->gamma_16_table != NULL) | |
3912 { | |
3913 int i; | |
3914 int istop = (1 << (8 - png_ptr->gamma_shift)); | |
3915 for (i = 0; i < istop; i++) | |
3916 { | |
3917 png_free(png_ptr, png_ptr->gamma_16_table[i]); | |
3918 } | |
3919 png_free(png_ptr, png_ptr->gamma_16_table); | |
3920 png_ptr->gamma_16_table = NULL; | |
3921 } | |
3922 #endif /* 16BIT */ | |
3923 | |
3924 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
3925 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
3926 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
3927 png_free(png_ptr, png_ptr->gamma_from_1); | |
3928 png_ptr->gamma_from_1 = NULL; | |
3929 png_free(png_ptr, png_ptr->gamma_to_1); | |
3930 png_ptr->gamma_to_1 = NULL; | |
3931 | |
3932 #ifdef PNG_16BIT_SUPPORTED | |
3933 if (png_ptr->gamma_16_from_1 != NULL) | |
3934 { | |
3935 int i; | |
3936 int istop = (1 << (8 - png_ptr->gamma_shift)); | |
3937 for (i = 0; i < istop; i++) | |
3938 { | |
3939 png_free(png_ptr, png_ptr->gamma_16_from_1[i]); | |
3940 } | |
3941 png_free(png_ptr, png_ptr->gamma_16_from_1); | |
3942 png_ptr->gamma_16_from_1 = NULL; | |
3943 } | |
3944 if (png_ptr->gamma_16_to_1 != NULL) | |
3945 { | |
3946 int i; | |
3947 int istop = (1 << (8 - png_ptr->gamma_shift)); | |
3948 for (i = 0; i < istop; i++) | |
3949 { | |
3950 png_free(png_ptr, png_ptr->gamma_16_to_1[i]); | |
3951 } | |
3952 png_free(png_ptr, png_ptr->gamma_16_to_1); | |
3953 png_ptr->gamma_16_to_1 = NULL; | |
3954 } | |
3955 #endif /* 16BIT */ | |
3956 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
3957 } | |
3958 | |
3959 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit | |
3960 * tables, we don't make a full table if we are reducing to 8-bit in | |
3961 * the future. Note also how the gamma_16 tables are segmented so that | |
3962 * we don't need to allocate > 64K chunks for a full 16-bit table. | |
3963 */ | |
3964 void /* PRIVATE */ | |
3965 png_build_gamma_table(png_structrp png_ptr, int bit_depth) | |
3966 { | |
3967 png_debug(1, "in png_build_gamma_table"); | |
3968 | |
3969 /* Remove any existing table; this copes with multiple calls to | |
3970 * png_read_update_info. The warning is because building the gamma tables | |
3971 * multiple times is a performance hit - it's harmless but the ability to call | |
3972 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible | |
3973 * to warn if the app introduces such a hit. | |
3974 */ | |
3975 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) | |
3976 { | |
3977 png_warning(png_ptr, "gamma table being rebuilt"); | |
3978 png_destroy_gamma_table(png_ptr); | |
3979 } | |
3980 | |
3981 if (bit_depth <= 8) | |
3982 { | |
3983 png_build_8bit_table(png_ptr, &png_ptr->gamma_table, | |
3984 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, | |
3985 png_ptr->screen_gamma) : PNG_FP_1); | |
3986 | |
3987 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
3988 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
3989 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
3990 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) | |
3991 { | |
3992 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, | |
3993 png_reciprocal(png_ptr->colorspace.gamma)); | |
3994 | |
3995 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, | |
3996 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : | |
3997 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); | |
3998 } | |
3999 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
4000 } | |
4001 #ifdef PNG_16BIT_SUPPORTED | |
4002 else | |
4003 { | |
4004 png_byte shift, sig_bit; | |
4005 | |
4006 if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) | |
4007 { | |
4008 sig_bit = png_ptr->sig_bit.red; | |
4009 | |
4010 if (png_ptr->sig_bit.green > sig_bit) | |
4011 sig_bit = png_ptr->sig_bit.green; | |
4012 | |
4013 if (png_ptr->sig_bit.blue > sig_bit) | |
4014 sig_bit = png_ptr->sig_bit.blue; | |
4015 } | |
4016 else | |
4017 sig_bit = png_ptr->sig_bit.gray; | |
4018 | |
4019 /* 16-bit gamma code uses this equation: | |
4020 * | |
4021 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] | |
4022 * | |
4023 * Where 'iv' is the input color value and 'ov' is the output value - | |
4024 * pow(iv, gamma). | |
4025 * | |
4026 * Thus the gamma table consists of up to 256 256 entry tables. The table | |
4027 * is selected by the (8-gamma_shift) most significant of the low 8 bits of | |
4028 * the color value then indexed by the upper 8 bits: | |
4029 * | |
4030 * table[low bits][high 8 bits] | |
4031 * | |
4032 * So the table 'n' corresponds to all those 'iv' of: | |
4033 * | |
4034 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> | |
4035 * | |
4036 */ | |
4037 if (sig_bit > 0 && sig_bit < 16U) | |
4038 shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */ | |
4039 | |
4040 else | |
4041 shift = 0; /* keep all 16 bits */ | |
4042 | |
4043 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) | |
4044 { | |
4045 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively | |
4046 * the significant bits in the *input* when the output will | |
4047 * eventually be 8 bits. By default it is 11. | |
4048 */ | |
4049 if (shift < (16U - PNG_MAX_GAMMA_8)) | |
4050 shift = (16U - PNG_MAX_GAMMA_8); | |
4051 } | |
4052 | |
4053 if (shift > 8U) | |
4054 shift = 8U; /* Guarantees at least one table! */ | |
4055 | |
4056 png_ptr->gamma_shift = shift; | |
4057 | |
4058 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now | |
4059 * PNG_COMPOSE). This effectively smashed the background calculation for | |
4060 * 16-bit output because the 8-bit table assumes the result will be reduced | |
4061 * to 8 bits. | |
4062 */ | |
4063 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) | |
4064 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, | |
4065 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma, | |
4066 png_ptr->screen_gamma) : PNG_FP_1); | |
4067 | |
4068 else | |
4069 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, | |
4070 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma, | |
4071 png_ptr->screen_gamma) : PNG_FP_1); | |
4072 | |
4073 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
4074 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
4075 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
4076 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) | |
4077 { | |
4078 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, | |
4079 png_reciprocal(png_ptr->colorspace.gamma)); | |
4080 | |
4081 /* Notice that the '16 from 1' table should be full precision, however | |
4082 * the lookup on this table still uses gamma_shift, so it can't be. | |
4083 * TODO: fix this. | |
4084 */ | |
4085 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, | |
4086 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : | |
4087 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */); | |
4088 } | |
4089 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
4090 } | |
4091 #endif /* 16BIT */ | |
4092 } | |
4093 #endif /* READ_GAMMA */ | |
4094 | |
4095 /* HARDWARE OPTION SUPPORT */ | |
4096 #ifdef PNG_SET_OPTION_SUPPORTED | |
4097 int PNGAPI | |
4098 png_set_option(png_structrp png_ptr, int option, int onoff) | |
4099 { | |
4100 if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT && | |
4101 (option & 1) == 0) | |
4102 { | |
4103 int mask = 3 << option; | |
4104 int setting = (2 + (onoff != 0)) << option; | |
4105 int current = png_ptr->options; | |
4106 | |
4107 png_ptr->options = (png_byte)((current & ~mask) | setting); | |
4108 | |
4109 return (current & mask) >> option; | |
4110 } | |
4111 | |
4112 return PNG_OPTION_INVALID; | |
4113 } | |
4114 #endif | |
4115 | |
4116 /* sRGB support */ | |
4117 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ | |
4118 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) | |
4119 /* sRGB conversion tables; these are machine generated with the code in | |
4120 * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the | |
4121 * specification (see the article at http://en.wikipedia.org/wiki/SRGB) | |
4122 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng. | |
4123 * The sRGB to linear table is exact (to the nearest 16 bit linear fraction). | |
4124 * The inverse (linear to sRGB) table has accuracies as follows: | |
4125 * | |
4126 * For all possible (255*65535+1) input values: | |
4127 * | |
4128 * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact | |
4129 * | |
4130 * For the input values corresponding to the 65536 16-bit values: | |
4131 * | |
4132 * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact | |
4133 * | |
4134 * In all cases the inexact readings are off by one. | |
4135 */ | |
4136 | |
4137 #ifdef PNG_SIMPLIFIED_READ_SUPPORTED | |
4138 /* The convert-to-sRGB table is only currently required for read. */ | |
4139 const png_uint_16 png_sRGB_table[256] = | |
4140 { | |
4141 0,20,40,60,80,99,119,139, | |
4142 159,179,199,219,241,264,288,313, | |
4143 340,367,396,427,458,491,526,562, | |
4144 599,637,677,718,761,805,851,898, | |
4145 947,997,1048,1101,1156,1212,1270,1330, | |
4146 1391,1453,1517,1583,1651,1720,1790,1863, | |
4147 1937,2013,2090,2170,2250,2333,2418,2504, | |
4148 2592,2681,2773,2866,2961,3058,3157,3258, | |
4149 3360,3464,3570,3678,3788,3900,4014,4129, | |
4150 4247,4366,4488,4611,4736,4864,4993,5124, | |
4151 5257,5392,5530,5669,5810,5953,6099,6246, | |
4152 6395,6547,6700,6856,7014,7174,7335,7500, | |
4153 7666,7834,8004,8177,8352,8528,8708,8889, | |
4154 9072,9258,9445,9635,9828,10022,10219,10417, | |
4155 10619,10822,11028,11235,11446,11658,11873,12090, | |
4156 12309,12530,12754,12980,13209,13440,13673,13909, | |
4157 14146,14387,14629,14874,15122,15371,15623,15878, | |
4158 16135,16394,16656,16920,17187,17456,17727,18001, | |
4159 18277,18556,18837,19121,19407,19696,19987,20281, | |
4160 20577,20876,21177,21481,21787,22096,22407,22721, | |
4161 23038,23357,23678,24002,24329,24658,24990,25325, | |
4162 25662,26001,26344,26688,27036,27386,27739,28094, | |
4163 28452,28813,29176,29542,29911,30282,30656,31033, | |
4164 31412,31794,32179,32567,32957,33350,33745,34143, | |
4165 34544,34948,35355,35764,36176,36591,37008,37429, | |
4166 37852,38278,38706,39138,39572,40009,40449,40891, | |
4167 41337,41785,42236,42690,43147,43606,44069,44534, | |
4168 45002,45473,45947,46423,46903,47385,47871,48359, | |
4169 48850,49344,49841,50341,50844,51349,51858,52369, | |
4170 52884,53401,53921,54445,54971,55500,56032,56567, | |
4171 57105,57646,58190,58737,59287,59840,60396,60955, | |
4172 61517,62082,62650,63221,63795,64372,64952,65535 | |
4173 }; | |
4174 | |
4175 #endif /* simplified read only */ | |
4176 | |
4177 /* The base/delta tables are required for both read and write (but currently | |
4178 * only the simplified versions.) | |
4179 */ | |
4180 const png_uint_16 png_sRGB_base[512] = | |
4181 { | |
4182 128,1782,3383,4644,5675,6564,7357,8074, | |
4183 8732,9346,9921,10463,10977,11466,11935,12384, | |
4184 12816,13233,13634,14024,14402,14769,15125,15473, | |
4185 15812,16142,16466,16781,17090,17393,17690,17981, | |
4186 18266,18546,18822,19093,19359,19621,19879,20133, | |
4187 20383,20630,20873,21113,21349,21583,21813,22041, | |
4188 22265,22487,22707,22923,23138,23350,23559,23767, | |
4189 23972,24175,24376,24575,24772,24967,25160,25352, | |
4190 25542,25730,25916,26101,26284,26465,26645,26823, | |
4191 27000,27176,27350,27523,27695,27865,28034,28201, | |
4192 28368,28533,28697,28860,29021,29182,29341,29500, | |
4193 29657,29813,29969,30123,30276,30429,30580,30730, | |
4194 30880,31028,31176,31323,31469,31614,31758,31902, | |
4195 32045,32186,32327,32468,32607,32746,32884,33021, | |
4196 33158,33294,33429,33564,33697,33831,33963,34095, | |
4197 34226,34357,34486,34616,34744,34873,35000,35127, | |
4198 35253,35379,35504,35629,35753,35876,35999,36122, | |
4199 36244,36365,36486,36606,36726,36845,36964,37083, | |
4200 37201,37318,37435,37551,37668,37783,37898,38013, | |
4201 38127,38241,38354,38467,38580,38692,38803,38915, | |
4202 39026,39136,39246,39356,39465,39574,39682,39790, | |
4203 39898,40005,40112,40219,40325,40431,40537,40642, | |
4204 40747,40851,40955,41059,41163,41266,41369,41471, | |
4205 41573,41675,41777,41878,41979,42079,42179,42279, | |
4206 42379,42478,42577,42676,42775,42873,42971,43068, | |
4207 43165,43262,43359,43456,43552,43648,43743,43839, | |
4208 43934,44028,44123,44217,44311,44405,44499,44592, | |
4209 44685,44778,44870,44962,45054,45146,45238,45329, | |
4210 45420,45511,45601,45692,45782,45872,45961,46051, | |
4211 46140,46229,46318,46406,46494,46583,46670,46758, | |
4212 46846,46933,47020,47107,47193,47280,47366,47452, | |
4213 47538,47623,47709,47794,47879,47964,48048,48133, | |
4214 48217,48301,48385,48468,48552,48635,48718,48801, | |
4215 48884,48966,49048,49131,49213,49294,49376,49458, | |
4216 49539,49620,49701,49782,49862,49943,50023,50103, | |
4217 50183,50263,50342,50422,50501,50580,50659,50738, | |
4218 50816,50895,50973,51051,51129,51207,51285,51362, | |
4219 51439,51517,51594,51671,51747,51824,51900,51977, | |
4220 52053,52129,52205,52280,52356,52432,52507,52582, | |
4221 52657,52732,52807,52881,52956,53030,53104,53178, | |
4222 53252,53326,53400,53473,53546,53620,53693,53766, | |
4223 53839,53911,53984,54056,54129,54201,54273,54345, | |
4224 54417,54489,54560,54632,54703,54774,54845,54916, | |
4225 54987,55058,55129,55199,55269,55340,55410,55480, | |
4226 55550,55620,55689,55759,55828,55898,55967,56036, | |
4227 56105,56174,56243,56311,56380,56448,56517,56585, | |
4228 56653,56721,56789,56857,56924,56992,57059,57127, | |
4229 57194,57261,57328,57395,57462,57529,57595,57662, | |
4230 57728,57795,57861,57927,57993,58059,58125,58191, | |
4231 58256,58322,58387,58453,58518,58583,58648,58713, | |
4232 58778,58843,58908,58972,59037,59101,59165,59230, | |
4233 59294,59358,59422,59486,59549,59613,59677,59740, | |
4234 59804,59867,59930,59993,60056,60119,60182,60245, | |
4235 60308,60370,60433,60495,60558,60620,60682,60744, | |
4236 60806,60868,60930,60992,61054,61115,61177,61238, | |
4237 61300,61361,61422,61483,61544,61605,61666,61727, | |
4238 61788,61848,61909,61969,62030,62090,62150,62211, | |
4239 62271,62331,62391,62450,62510,62570,62630,62689, | |
4240 62749,62808,62867,62927,62986,63045,63104,63163, | |
4241 63222,63281,63340,63398,63457,63515,63574,63632, | |
4242 63691,63749,63807,63865,63923,63981,64039,64097, | |
4243 64155,64212,64270,64328,64385,64443,64500,64557, | |
4244 64614,64672,64729,64786,64843,64900,64956,65013, | |
4245 65070,65126,65183,65239,65296,65352,65409,65465 | |
4246 }; | |
4247 | |
4248 const png_byte png_sRGB_delta[512] = | |
4249 { | |
4250 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54, | |
4251 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36, | |
4252 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28, | |
4253 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24, | |
4254 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21, | |
4255 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19, | |
4256 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17, | |
4257 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16, | |
4258 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15, | |
4259 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14, | |
4260 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13, | |
4261 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12, | |
4262 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, | |
4263 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11, | |
4264 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, | |
4265 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, | |
4266 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, | |
4267 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, | |
4268 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, | |
4269 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, | |
4270 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, | |
4271 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, | |
4272 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, | |
4273 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
4274 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
4275 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
4276 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
4277 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, | |
4278 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7, | |
4279 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | |
4280 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, | |
4281 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 | |
4282 }; | |
4283 #endif /* SIMPLIFIED READ/WRITE sRGB support */ | |
4284 | |
4285 /* SIMPLIFIED READ/WRITE SUPPORT */ | |
4286 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\ | |
4287 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) | |
4288 static int | |
4289 png_image_free_function(png_voidp argument) | |
4290 { | |
4291 png_imagep image = png_voidcast(png_imagep, argument); | |
4292 png_controlp cp = image->opaque; | |
4293 png_control c; | |
4294 | |
4295 /* Double check that we have a png_ptr - it should be impossible to get here | |
4296 * without one. | |
4297 */ | |
4298 if (cp->png_ptr == NULL) | |
4299 return 0; | |
4300 | |
4301 /* First free any data held in the control structure. */ | |
4302 # ifdef PNG_STDIO_SUPPORTED | |
4303 if (cp->owned_file) | |
4304 { | |
4305 FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr); | |
4306 cp->owned_file = 0; | |
4307 | |
4308 /* Ignore errors here. */ | |
4309 if (fp != NULL) | |
4310 { | |
4311 cp->png_ptr->io_ptr = NULL; | |
4312 (void)fclose(fp); | |
4313 } | |
4314 } | |
4315 # endif | |
4316 | |
4317 /* Copy the control structure so that the original, allocated, version can be | |
4318 * safely freed. Notice that a png_error here stops the remainder of the | |
4319 * cleanup, but this is probably fine because that would indicate bad memory | |
4320 * problems anyway. | |
4321 */ | |
4322 c = *cp; | |
4323 image->opaque = &c; | |
4324 png_free(c.png_ptr, cp); | |
4325 | |
4326 /* Then the structures, calling the correct API. */ | |
4327 if (c.for_write) | |
4328 { | |
4329 # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED | |
4330 png_destroy_write_struct(&c.png_ptr, &c.info_ptr); | |
4331 # else | |
4332 png_error(c.png_ptr, "simplified write not supported"); | |
4333 # endif | |
4334 } | |
4335 else | |
4336 { | |
4337 # ifdef PNG_SIMPLIFIED_READ_SUPPORTED | |
4338 png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL); | |
4339 # else | |
4340 png_error(c.png_ptr, "simplified read not supported"); | |
4341 # endif | |
4342 } | |
4343 | |
4344 /* Success. */ | |
4345 return 1; | |
4346 } | |
4347 | |
4348 void PNGAPI | |
4349 png_image_free(png_imagep image) | |
4350 { | |
4351 /* Safely call the real function, but only if doing so is safe at this point | |
4352 * (if not inside an error handling context). Otherwise assume | |
4353 * png_safe_execute will call this API after the return. | |
4354 */ | |
4355 if (image != NULL && image->opaque != NULL && | |
4356 image->opaque->error_buf == NULL) | |
4357 { | |
4358 /* Ignore errors here: */ | |
4359 (void)png_safe_execute(image, png_image_free_function, image); | |
4360 image->opaque = NULL; | |
4361 } | |
4362 } | |
4363 | |
4364 int /* PRIVATE */ | |
4365 png_image_error(png_imagep image, png_const_charp error_message) | |
4366 { | |
4367 /* Utility to log an error. */ | |
4368 png_safecat(image->message, (sizeof image->message), 0, error_message); | |
4369 image->warning_or_error |= PNG_IMAGE_ERROR; | |
4370 png_image_free(image); | |
4371 return 0; | |
4372 } | |
4373 | |
4374 #endif /* SIMPLIFIED READ/WRITE */ | |
4375 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ |