comparison lib/libpng/png.c @ 2297:5e2e171c6911

wow
author Ritor1
date Mon, 17 Mar 2014 01:22:20 +0600
parents
children
comparison
equal deleted inserted replaced
2296:6e178010fc29 2297:5e2e171c6911
1
2 /* png.c - location for general purpose libpng functions
3 *
4 * Last changed in libpng 1.6.9 [February 6, 2014]
5 * Copyright (c) 1998-2014 Glenn Randers-Pehrson
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
8 *
9 * This code is released under the libpng license.
10 * For conditions of distribution and use, see the disclaimer
11 * and license in png.h
12 */
13
14 #include "pngpriv.h"
15
16 /* Generate a compiler error if there is an old png.h in the search path. */
17 typedef png_libpng_version_1_6_10 Your_png_h_is_not_version_1_6_10;
18
19 /* Tells libpng that we have already handled the first "num_bytes" bytes
20 * of the PNG file signature. If the PNG data is embedded into another
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22 * or write any of the magic bytes before it starts on the IHDR.
23 */
24
25 #ifdef PNG_READ_SUPPORTED
26 void PNGAPI
27 png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
28 {
29 png_debug(1, "in png_set_sig_bytes");
30
31 if (png_ptr == NULL)
32 return;
33
34 if (num_bytes > 8)
35 png_error(png_ptr, "Too many bytes for PNG signature");
36
37 png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
38 }
39
40 /* Checks whether the supplied bytes match the PNG signature. We allow
41 * checking less than the full 8-byte signature so that those apps that
42 * already read the first few bytes of a file to determine the file type
43 * can simply check the remaining bytes for extra assurance. Returns
44 * an integer less than, equal to, or greater than zero if sig is found,
45 * respectively, to be less than, to match, or be greater than the correct
46 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
47 */
48 int PNGAPI
49 png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
50 {
51 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
52
53 if (num_to_check > 8)
54 num_to_check = 8;
55
56 else if (num_to_check < 1)
57 return (-1);
58
59 if (start > 7)
60 return (-1);
61
62 if (start + num_to_check > 8)
63 num_to_check = 8 - start;
64
65 return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check)));
66 }
67
68 #endif /* PNG_READ_SUPPORTED */
69
70 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
71 /* Function to allocate memory for zlib */
72 PNG_FUNCTION(voidpf /* PRIVATE */,
73 png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
74 {
75 png_alloc_size_t num_bytes = size;
76
77 if (png_ptr == NULL)
78 return NULL;
79
80 if (items >= (~(png_alloc_size_t)0)/size)
81 {
82 png_warning (png_voidcast(png_structrp, png_ptr),
83 "Potential overflow in png_zalloc()");
84 return NULL;
85 }
86
87 num_bytes *= items;
88 return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
89 }
90
91 /* Function to free memory for zlib */
92 void /* PRIVATE */
93 png_zfree(voidpf png_ptr, voidpf ptr)
94 {
95 png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
96 }
97
98 /* Reset the CRC variable to 32 bits of 1's. Care must be taken
99 * in case CRC is > 32 bits to leave the top bits 0.
100 */
101 void /* PRIVATE */
102 png_reset_crc(png_structrp png_ptr)
103 {
104 /* The cast is safe because the crc is a 32 bit value. */
105 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
106 }
107
108 /* Calculate the CRC over a section of data. We can only pass as
109 * much data to this routine as the largest single buffer size. We
110 * also check that this data will actually be used before going to the
111 * trouble of calculating it.
112 */
113 void /* PRIVATE */
114 png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, png_size_t length)
115 {
116 int need_crc = 1;
117
118 if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name))
119 {
120 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
121 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
122 need_crc = 0;
123 }
124
125 else /* critical */
126 {
127 if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
128 need_crc = 0;
129 }
130
131 /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
132 * systems it is a 64 bit value. crc32, however, returns 32 bits so the
133 * following cast is safe. 'uInt' may be no more than 16 bits, so it is
134 * necessary to perform a loop here.
135 */
136 if (need_crc && length > 0)
137 {
138 uLong crc = png_ptr->crc; /* Should never issue a warning */
139
140 do
141 {
142 uInt safe_length = (uInt)length;
143 if (safe_length == 0)
144 safe_length = (uInt)-1; /* evil, but safe */
145
146 crc = crc32(crc, ptr, safe_length);
147
148 /* The following should never issue compiler warnings; if they do the
149 * target system has characteristics that will probably violate other
150 * assumptions within the libpng code.
151 */
152 ptr += safe_length;
153 length -= safe_length;
154 }
155 while (length > 0);
156
157 /* And the following is always safe because the crc is only 32 bits. */
158 png_ptr->crc = (png_uint_32)crc;
159 }
160 }
161
162 /* Check a user supplied version number, called from both read and write
163 * functions that create a png_struct.
164 */
165 int
166 png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
167 {
168 if (user_png_ver)
169 {
170 int i = 0;
171
172 do
173 {
174 if (user_png_ver[i] != png_libpng_ver[i])
175 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
176 } while (png_libpng_ver[i++]);
177 }
178
179 else
180 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
181
182 if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
183 {
184 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
185 * we must recompile any applications that use any older library version.
186 * For versions after libpng 1.0, we will be compatible, so we need
187 * only check the first and third digits (note that when we reach version
188 * 1.10 we will need to check the fourth symbol, namely user_png_ver[3]).
189 */
190 if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
191 (user_png_ver[0] == '1' && (user_png_ver[2] != png_libpng_ver[2] ||
192 user_png_ver[3] != png_libpng_ver[3])) ||
193 (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
194 {
195 #ifdef PNG_WARNINGS_SUPPORTED
196 size_t pos = 0;
197 char m[128];
198
199 pos = png_safecat(m, (sizeof m), pos,
200 "Application built with libpng-");
201 pos = png_safecat(m, (sizeof m), pos, user_png_ver);
202 pos = png_safecat(m, (sizeof m), pos, " but running with ");
203 pos = png_safecat(m, (sizeof m), pos, png_libpng_ver);
204 PNG_UNUSED(pos)
205
206 png_warning(png_ptr, m);
207 #endif
208
209 #ifdef PNG_ERROR_NUMBERS_SUPPORTED
210 png_ptr->flags = 0;
211 #endif
212
213 return 0;
214 }
215 }
216
217 /* Success return. */
218 return 1;
219 }
220
221 /* Generic function to create a png_struct for either read or write - this
222 * contains the common initialization.
223 */
224 PNG_FUNCTION(png_structp /* PRIVATE */,
225 png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
226 png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
227 png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
228 {
229 png_struct create_struct;
230 # ifdef PNG_SETJMP_SUPPORTED
231 jmp_buf create_jmp_buf;
232 # endif
233
234 /* This temporary stack-allocated structure is used to provide a place to
235 * build enough context to allow the user provided memory allocator (if any)
236 * to be called.
237 */
238 memset(&create_struct, 0, (sizeof create_struct));
239
240 /* Added at libpng-1.2.6 */
241 # ifdef PNG_USER_LIMITS_SUPPORTED
242 create_struct.user_width_max = PNG_USER_WIDTH_MAX;
243 create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
244
245 # ifdef PNG_USER_CHUNK_CACHE_MAX
246 /* Added at libpng-1.2.43 and 1.4.0 */
247 create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
248 # endif
249
250 # ifdef PNG_USER_CHUNK_MALLOC_MAX
251 /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists
252 * in png_struct regardless.
253 */
254 create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
255 # endif
256 # endif
257
258 /* The following two API calls simply set fields in png_struct, so it is safe
259 * to do them now even though error handling is not yet set up.
260 */
261 # ifdef PNG_USER_MEM_SUPPORTED
262 png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
263 # else
264 PNG_UNUSED(mem_ptr)
265 PNG_UNUSED(malloc_fn)
266 PNG_UNUSED(free_fn)
267 # endif
268
269 /* (*error_fn) can return control to the caller after the error_ptr is set,
270 * this will result in a memory leak unless the error_fn does something
271 * extremely sophisticated. The design lacks merit but is implicit in the
272 * API.
273 */
274 png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
275
276 # ifdef PNG_SETJMP_SUPPORTED
277 if (!setjmp(create_jmp_buf))
278 {
279 /* Temporarily fake out the longjmp information until we have
280 * successfully completed this function. This only works if we have
281 * setjmp() support compiled in, but it is safe - this stuff should
282 * never happen.
283 */
284 create_struct.jmp_buf_ptr = &create_jmp_buf;
285 create_struct.jmp_buf_size = 0; /*stack allocation*/
286 create_struct.longjmp_fn = longjmp;
287 # else
288 {
289 # endif
290 /* Call the general version checker (shared with read and write code):
291 */
292 if (png_user_version_check(&create_struct, user_png_ver))
293 {
294 png_structrp png_ptr = png_voidcast(png_structrp,
295 png_malloc_warn(&create_struct, (sizeof *png_ptr)));
296
297 if (png_ptr != NULL)
298 {
299 /* png_ptr->zstream holds a back-pointer to the png_struct, so
300 * this can only be done now:
301 */
302 create_struct.zstream.zalloc = png_zalloc;
303 create_struct.zstream.zfree = png_zfree;
304 create_struct.zstream.opaque = png_ptr;
305
306 # ifdef PNG_SETJMP_SUPPORTED
307 /* Eliminate the local error handling: */
308 create_struct.jmp_buf_ptr = NULL;
309 create_struct.jmp_buf_size = 0;
310 create_struct.longjmp_fn = 0;
311 # endif
312
313 *png_ptr = create_struct;
314
315 /* This is the successful return point */
316 return png_ptr;
317 }
318 }
319 }
320
321 /* A longjmp because of a bug in the application storage allocator or a
322 * simple failure to allocate the png_struct.
323 */
324 return NULL;
325 }
326
327 /* Allocate the memory for an info_struct for the application. */
328 PNG_FUNCTION(png_infop,PNGAPI
329 png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
330 {
331 png_inforp info_ptr;
332
333 png_debug(1, "in png_create_info_struct");
334
335 if (png_ptr == NULL)
336 return NULL;
337
338 /* Use the internal API that does not (or at least should not) error out, so
339 * that this call always returns ok. The application typically sets up the
340 * error handling *after* creating the info_struct because this is the way it
341 * has always been done in 'example.c'.
342 */
343 info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
344 (sizeof *info_ptr)));
345
346 if (info_ptr != NULL)
347 memset(info_ptr, 0, (sizeof *info_ptr));
348
349 return info_ptr;
350 }
351
352 /* This function frees the memory associated with a single info struct.
353 * Normally, one would use either png_destroy_read_struct() or
354 * png_destroy_write_struct() to free an info struct, but this may be
355 * useful for some applications. From libpng 1.6.0 this function is also used
356 * internally to implement the png_info release part of the 'struct' destroy
357 * APIs. This ensures that all possible approaches free the same data (all of
358 * it).
359 */
360 void PNGAPI
361 png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
362 {
363 png_inforp info_ptr = NULL;
364
365 png_debug(1, "in png_destroy_info_struct");
366
367 if (png_ptr == NULL)
368 return;
369
370 if (info_ptr_ptr != NULL)
371 info_ptr = *info_ptr_ptr;
372
373 if (info_ptr != NULL)
374 {
375 /* Do this first in case of an error below; if the app implements its own
376 * memory management this can lead to png_free calling png_error, which
377 * will abort this routine and return control to the app error handler.
378 * An infinite loop may result if it then tries to free the same info
379 * ptr.
380 */
381 *info_ptr_ptr = NULL;
382
383 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
384 memset(info_ptr, 0, (sizeof *info_ptr));
385 png_free(png_ptr, info_ptr);
386 }
387 }
388
389 /* Initialize the info structure. This is now an internal function (0.89)
390 * and applications using it are urged to use png_create_info_struct()
391 * instead. Use deprecated in 1.6.0, internal use removed (used internally it
392 * is just a memset).
393 *
394 * NOTE: it is almost inconceivable that this API is used because it bypasses
395 * the user-memory mechanism and the user error handling/warning mechanisms in
396 * those cases where it does anything other than a memset.
397 */
398 PNG_FUNCTION(void,PNGAPI
399 png_info_init_3,(png_infopp ptr_ptr, png_size_t png_info_struct_size),
400 PNG_DEPRECATED)
401 {
402 png_inforp info_ptr = *ptr_ptr;
403
404 png_debug(1, "in png_info_init_3");
405
406 if (info_ptr == NULL)
407 return;
408
409 if ((sizeof (png_info)) > png_info_struct_size)
410 {
411 *ptr_ptr = NULL;
412 /* The following line is why this API should not be used: */
413 free(info_ptr);
414 info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
415 (sizeof *info_ptr)));
416 *ptr_ptr = info_ptr;
417 }
418
419 /* Set everything to 0 */
420 memset(info_ptr, 0, (sizeof *info_ptr));
421 }
422
423 /* The following API is not called internally */
424 void PNGAPI
425 png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
426 int freer, png_uint_32 mask)
427 {
428 png_debug(1, "in png_data_freer");
429
430 if (png_ptr == NULL || info_ptr == NULL)
431 return;
432
433 if (freer == PNG_DESTROY_WILL_FREE_DATA)
434 info_ptr->free_me |= mask;
435
436 else if (freer == PNG_USER_WILL_FREE_DATA)
437 info_ptr->free_me &= ~mask;
438
439 else
440 png_error(png_ptr, "Unknown freer parameter in png_data_freer");
441 }
442
443 void PNGAPI
444 png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
445 int num)
446 {
447 png_debug(1, "in png_free_data");
448
449 if (png_ptr == NULL || info_ptr == NULL)
450 return;
451
452 #ifdef PNG_TEXT_SUPPORTED
453 /* Free text item num or (if num == -1) all text items */
454 if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
455 {
456 if (num != -1)
457 {
458 if (info_ptr->text && info_ptr->text[num].key)
459 {
460 png_free(png_ptr, info_ptr->text[num].key);
461 info_ptr->text[num].key = NULL;
462 }
463 }
464
465 else
466 {
467 int i;
468 for (i = 0; i < info_ptr->num_text; i++)
469 png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
470 png_free(png_ptr, info_ptr->text);
471 info_ptr->text = NULL;
472 info_ptr->num_text=0;
473 }
474 }
475 #endif
476
477 #ifdef PNG_tRNS_SUPPORTED
478 /* Free any tRNS entry */
479 if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
480 {
481 png_free(png_ptr, info_ptr->trans_alpha);
482 info_ptr->trans_alpha = NULL;
483 info_ptr->valid &= ~PNG_INFO_tRNS;
484 }
485 #endif
486
487 #ifdef PNG_sCAL_SUPPORTED
488 /* Free any sCAL entry */
489 if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
490 {
491 png_free(png_ptr, info_ptr->scal_s_width);
492 png_free(png_ptr, info_ptr->scal_s_height);
493 info_ptr->scal_s_width = NULL;
494 info_ptr->scal_s_height = NULL;
495 info_ptr->valid &= ~PNG_INFO_sCAL;
496 }
497 #endif
498
499 #ifdef PNG_pCAL_SUPPORTED
500 /* Free any pCAL entry */
501 if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
502 {
503 png_free(png_ptr, info_ptr->pcal_purpose);
504 png_free(png_ptr, info_ptr->pcal_units);
505 info_ptr->pcal_purpose = NULL;
506 info_ptr->pcal_units = NULL;
507 if (info_ptr->pcal_params != NULL)
508 {
509 unsigned int i;
510 for (i = 0; i < info_ptr->pcal_nparams; i++)
511 {
512 png_free(png_ptr, info_ptr->pcal_params[i]);
513 info_ptr->pcal_params[i] = NULL;
514 }
515 png_free(png_ptr, info_ptr->pcal_params);
516 info_ptr->pcal_params = NULL;
517 }
518 info_ptr->valid &= ~PNG_INFO_pCAL;
519 }
520 #endif
521
522 #ifdef PNG_iCCP_SUPPORTED
523 /* Free any profile entry */
524 if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
525 {
526 png_free(png_ptr, info_ptr->iccp_name);
527 png_free(png_ptr, info_ptr->iccp_profile);
528 info_ptr->iccp_name = NULL;
529 info_ptr->iccp_profile = NULL;
530 info_ptr->valid &= ~PNG_INFO_iCCP;
531 }
532 #endif
533
534 #ifdef PNG_sPLT_SUPPORTED
535 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
536 if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
537 {
538 if (num != -1)
539 {
540 if (info_ptr->splt_palettes)
541 {
542 png_free(png_ptr, info_ptr->splt_palettes[num].name);
543 png_free(png_ptr, info_ptr->splt_palettes[num].entries);
544 info_ptr->splt_palettes[num].name = NULL;
545 info_ptr->splt_palettes[num].entries = NULL;
546 }
547 }
548
549 else
550 {
551 if (info_ptr->splt_palettes_num)
552 {
553 int i;
554 for (i = 0; i < info_ptr->splt_palettes_num; i++)
555 png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, (int)i);
556
557 png_free(png_ptr, info_ptr->splt_palettes);
558 info_ptr->splt_palettes = NULL;
559 info_ptr->splt_palettes_num = 0;
560 }
561 info_ptr->valid &= ~PNG_INFO_sPLT;
562 }
563 }
564 #endif
565
566 #ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
567 if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
568 {
569 if (num != -1)
570 {
571 if (info_ptr->unknown_chunks)
572 {
573 png_free(png_ptr, info_ptr->unknown_chunks[num].data);
574 info_ptr->unknown_chunks[num].data = NULL;
575 }
576 }
577
578 else
579 {
580 int i;
581
582 if (info_ptr->unknown_chunks_num)
583 {
584 for (i = 0; i < info_ptr->unknown_chunks_num; i++)
585 png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, (int)i);
586
587 png_free(png_ptr, info_ptr->unknown_chunks);
588 info_ptr->unknown_chunks = NULL;
589 info_ptr->unknown_chunks_num = 0;
590 }
591 }
592 }
593 #endif
594
595 #ifdef PNG_hIST_SUPPORTED
596 /* Free any hIST entry */
597 if ((mask & PNG_FREE_HIST) & info_ptr->free_me)
598 {
599 png_free(png_ptr, info_ptr->hist);
600 info_ptr->hist = NULL;
601 info_ptr->valid &= ~PNG_INFO_hIST;
602 }
603 #endif
604
605 /* Free any PLTE entry that was internally allocated */
606 if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
607 {
608 png_free(png_ptr, info_ptr->palette);
609 info_ptr->palette = NULL;
610 info_ptr->valid &= ~PNG_INFO_PLTE;
611 info_ptr->num_palette = 0;
612 }
613
614 #ifdef PNG_INFO_IMAGE_SUPPORTED
615 /* Free any image bits attached to the info structure */
616 if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
617 {
618 if (info_ptr->row_pointers)
619 {
620 png_uint_32 row;
621 for (row = 0; row < info_ptr->height; row++)
622 {
623 png_free(png_ptr, info_ptr->row_pointers[row]);
624 info_ptr->row_pointers[row] = NULL;
625 }
626 png_free(png_ptr, info_ptr->row_pointers);
627 info_ptr->row_pointers = NULL;
628 }
629 info_ptr->valid &= ~PNG_INFO_IDAT;
630 }
631 #endif
632
633 if (num != -1)
634 mask &= ~PNG_FREE_MUL;
635
636 info_ptr->free_me &= ~mask;
637 }
638 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
639
640 /* This function returns a pointer to the io_ptr associated with the user
641 * functions. The application should free any memory associated with this
642 * pointer before png_write_destroy() or png_read_destroy() are called.
643 */
644 png_voidp PNGAPI
645 png_get_io_ptr(png_const_structrp png_ptr)
646 {
647 if (png_ptr == NULL)
648 return (NULL);
649
650 return (png_ptr->io_ptr);
651 }
652
653 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
654 # ifdef PNG_STDIO_SUPPORTED
655 /* Initialize the default input/output functions for the PNG file. If you
656 * use your own read or write routines, you can call either png_set_read_fn()
657 * or png_set_write_fn() instead of png_init_io(). If you have defined
658 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
659 * function of your own because "FILE *" isn't necessarily available.
660 */
661 void PNGAPI
662 png_init_io(png_structrp png_ptr, png_FILE_p fp)
663 {
664 png_debug(1, "in png_init_io");
665
666 if (png_ptr == NULL)
667 return;
668
669 png_ptr->io_ptr = (png_voidp)fp;
670 }
671 # endif
672
673 #ifdef PNG_SAVE_INT_32_SUPPORTED
674 /* The png_save_int_32 function assumes integers are stored in two's
675 * complement format. If this isn't the case, then this routine needs to
676 * be modified to write data in two's complement format. Note that,
677 * the following works correctly even if png_int_32 has more than 32 bits
678 * (compare the more complex code required on read for sign extension.)
679 */
680 void PNGAPI
681 png_save_int_32(png_bytep buf, png_int_32 i)
682 {
683 buf[0] = (png_byte)((i >> 24) & 0xff);
684 buf[1] = (png_byte)((i >> 16) & 0xff);
685 buf[2] = (png_byte)((i >> 8) & 0xff);
686 buf[3] = (png_byte)(i & 0xff);
687 }
688 #endif
689
690 # ifdef PNG_TIME_RFC1123_SUPPORTED
691 /* Convert the supplied time into an RFC 1123 string suitable for use in
692 * a "Creation Time" or other text-based time string.
693 */
694 int PNGAPI
695 png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
696 {
697 static PNG_CONST char short_months[12][4] =
698 {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
699 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
700
701 if (out == NULL)
702 return 0;
703
704 if (ptime->year > 9999 /* RFC1123 limitation */ ||
705 ptime->month == 0 || ptime->month > 12 ||
706 ptime->day == 0 || ptime->day > 31 ||
707 ptime->hour > 23 || ptime->minute > 59 ||
708 ptime->second > 60)
709 return 0;
710
711 {
712 size_t pos = 0;
713 char number_buf[5]; /* enough for a four-digit year */
714
715 # define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
716 # define APPEND_NUMBER(format, value)\
717 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
718 # define APPEND(ch) if (pos < 28) out[pos++] = (ch)
719
720 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
721 APPEND(' ');
722 APPEND_STRING(short_months[(ptime->month - 1)]);
723 APPEND(' ');
724 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
725 APPEND(' ');
726 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
727 APPEND(':');
728 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
729 APPEND(':');
730 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
731 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
732
733 # undef APPEND
734 # undef APPEND_NUMBER
735 # undef APPEND_STRING
736 }
737
738 return 1;
739 }
740
741 # if PNG_LIBPNG_VER < 10700
742 /* To do: remove the following from libpng-1.7 */
743 /* Original API that uses a private buffer in png_struct.
744 * Deprecated because it causes png_struct to carry a spurious temporary
745 * buffer (png_struct::time_buffer), better to have the caller pass this in.
746 */
747 png_const_charp PNGAPI
748 png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
749 {
750 if (png_ptr != NULL)
751 {
752 /* The only failure above if png_ptr != NULL is from an invalid ptime */
753 if (!png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime))
754 png_warning(png_ptr, "Ignoring invalid time value");
755
756 else
757 return png_ptr->time_buffer;
758 }
759
760 return NULL;
761 }
762 # endif
763 # endif /* PNG_TIME_RFC1123_SUPPORTED */
764
765 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
766
767 png_const_charp PNGAPI
768 png_get_copyright(png_const_structrp png_ptr)
769 {
770 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
771 #ifdef PNG_STRING_COPYRIGHT
772 return PNG_STRING_COPYRIGHT
773 #else
774 # ifdef __STDC__
775 return PNG_STRING_NEWLINE \
776 "libpng version 1.6.10 - March 6, 2014" PNG_STRING_NEWLINE \
777 "Copyright (c) 1998-2014 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
778 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
779 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
780 PNG_STRING_NEWLINE;
781 # else
782 return "libpng version 1.6.10 - March 6, 2014\
783 Copyright (c) 1998-2014 Glenn Randers-Pehrson\
784 Copyright (c) 1996-1997 Andreas Dilger\
785 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
786 # endif
787 #endif
788 }
789
790 /* The following return the library version as a short string in the
791 * format 1.0.0 through 99.99.99zz. To get the version of *.h files
792 * used with your application, print out PNG_LIBPNG_VER_STRING, which
793 * is defined in png.h.
794 * Note: now there is no difference between png_get_libpng_ver() and
795 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
796 * it is guaranteed that png.c uses the correct version of png.h.
797 */
798 png_const_charp PNGAPI
799 png_get_libpng_ver(png_const_structrp png_ptr)
800 {
801 /* Version of *.c files used when building libpng */
802 return png_get_header_ver(png_ptr);
803 }
804
805 png_const_charp PNGAPI
806 png_get_header_ver(png_const_structrp png_ptr)
807 {
808 /* Version of *.h files used when building libpng */
809 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
810 return PNG_LIBPNG_VER_STRING;
811 }
812
813 png_const_charp PNGAPI
814 png_get_header_version(png_const_structrp png_ptr)
815 {
816 /* Returns longer string containing both version and date */
817 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
818 #ifdef __STDC__
819 return PNG_HEADER_VERSION_STRING
820 # ifndef PNG_READ_SUPPORTED
821 " (NO READ SUPPORT)"
822 # endif
823 PNG_STRING_NEWLINE;
824 #else
825 return PNG_HEADER_VERSION_STRING;
826 #endif
827 }
828
829 #ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
830 /* NOTE: this routine is not used internally! */
831 /* Build a grayscale palette. Palette is assumed to be 1 << bit_depth
832 * large of png_color. This lets grayscale images be treated as
833 * paletted. Most useful for gamma correction and simplification
834 * of code. This API is not used internally.
835 */
836 void PNGAPI
837 png_build_grayscale_palette(int bit_depth, png_colorp palette)
838 {
839 int num_palette;
840 int color_inc;
841 int i;
842 int v;
843
844 png_debug(1, "in png_do_build_grayscale_palette");
845
846 if (palette == NULL)
847 return;
848
849 switch (bit_depth)
850 {
851 case 1:
852 num_palette = 2;
853 color_inc = 0xff;
854 break;
855
856 case 2:
857 num_palette = 4;
858 color_inc = 0x55;
859 break;
860
861 case 4:
862 num_palette = 16;
863 color_inc = 0x11;
864 break;
865
866 case 8:
867 num_palette = 256;
868 color_inc = 1;
869 break;
870
871 default:
872 num_palette = 0;
873 color_inc = 0;
874 break;
875 }
876
877 for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
878 {
879 palette[i].red = (png_byte)v;
880 palette[i].green = (png_byte)v;
881 palette[i].blue = (png_byte)v;
882 }
883 }
884 #endif
885
886 #ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
887 int PNGAPI
888 png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
889 {
890 /* Check chunk_name and return "keep" value if it's on the list, else 0 */
891 png_const_bytep p, p_end;
892
893 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
894 return PNG_HANDLE_CHUNK_AS_DEFAULT;
895
896 p_end = png_ptr->chunk_list;
897 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
898
899 /* The code is the fifth byte after each four byte string. Historically this
900 * code was always searched from the end of the list, this is no longer
901 * necessary because the 'set' routine handles duplicate entries correcty.
902 */
903 do /* num_chunk_list > 0, so at least one */
904 {
905 p -= 5;
906
907 if (!memcmp(chunk_name, p, 4))
908 return p[4];
909 }
910 while (p > p_end);
911
912 /* This means that known chunks should be processed and unknown chunks should
913 * be handled according to the value of png_ptr->unknown_default; this can be
914 * confusing because, as a result, there are two levels of defaulting for
915 * unknown chunks.
916 */
917 return PNG_HANDLE_CHUNK_AS_DEFAULT;
918 }
919
920 #if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
921 defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
922 int /* PRIVATE */
923 png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
924 {
925 png_byte chunk_string[5];
926
927 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
928 return png_handle_as_unknown(png_ptr, chunk_string);
929 }
930 #endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
931 #endif /* SET_UNKNOWN_CHUNKS */
932
933 #ifdef PNG_READ_SUPPORTED
934 /* This function, added to libpng-1.0.6g, is untested. */
935 int PNGAPI
936 png_reset_zstream(png_structrp png_ptr)
937 {
938 if (png_ptr == NULL)
939 return Z_STREAM_ERROR;
940
941 /* WARNING: this resets the window bits to the maximum! */
942 return (inflateReset(&png_ptr->zstream));
943 }
944 #endif /* PNG_READ_SUPPORTED */
945
946 /* This function was added to libpng-1.0.7 */
947 png_uint_32 PNGAPI
948 png_access_version_number(void)
949 {
950 /* Version of *.c files used when building libpng */
951 return((png_uint_32)PNG_LIBPNG_VER);
952 }
953
954
955
956 #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
957 /* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
958 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
959 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
960 */
961 void /* PRIVATE */
962 png_zstream_error(png_structrp png_ptr, int ret)
963 {
964 /* Translate 'ret' into an appropriate error string, priority is given to the
965 * one in zstream if set. This always returns a string, even in cases like
966 * Z_OK or Z_STREAM_END where the error code is a success code.
967 */
968 if (png_ptr->zstream.msg == NULL) switch (ret)
969 {
970 default:
971 case Z_OK:
972 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
973 break;
974
975 case Z_STREAM_END:
976 /* Normal exit */
977 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
978 break;
979
980 case Z_NEED_DICT:
981 /* This means the deflate stream did not have a dictionary; this
982 * indicates a bogus PNG.
983 */
984 png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
985 break;
986
987 case Z_ERRNO:
988 /* gz APIs only: should not happen */
989 png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
990 break;
991
992 case Z_STREAM_ERROR:
993 /* internal libpng error */
994 png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
995 break;
996
997 case Z_DATA_ERROR:
998 png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
999 break;
1000
1001 case Z_MEM_ERROR:
1002 png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1003 break;
1004
1005 case Z_BUF_ERROR:
1006 /* End of input or output; not a problem if the caller is doing
1007 * incremental read or write.
1008 */
1009 png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1010 break;
1011
1012 case Z_VERSION_ERROR:
1013 png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1014 break;
1015
1016 case PNG_UNEXPECTED_ZLIB_RETURN:
1017 /* Compile errors here mean that zlib now uses the value co-opted in
1018 * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1019 * and change pngpriv.h. Note that this message is "... return",
1020 * whereas the default/Z_OK one is "... return code".
1021 */
1022 png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1023 break;
1024 }
1025 }
1026
1027 /* png_convert_size: a PNGAPI but no longer in png.h, so deleted
1028 * at libpng 1.5.5!
1029 */
1030
1031 /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
1032 #ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
1033 static int
1034 png_colorspace_check_gamma(png_const_structrp png_ptr,
1035 png_colorspacerp colorspace, png_fixed_point gAMA, int from)
1036 /* This is called to check a new gamma value against an existing one. The
1037 * routine returns false if the new gamma value should not be written.
1038 *
1039 * 'from' says where the new gamma value comes from:
1040 *
1041 * 0: the new gamma value is the libpng estimate for an ICC profile
1042 * 1: the new gamma value comes from a gAMA chunk
1043 * 2: the new gamma value comes from an sRGB chunk
1044 */
1045 {
1046 png_fixed_point gtest;
1047
1048 if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
1049 (!png_muldiv(&gtest, colorspace->gamma, PNG_FP_1, gAMA) ||
1050 png_gamma_significant(gtest)))
1051 {
1052 /* Either this is an sRGB image, in which case the calculated gamma
1053 * approximation should match, or this is an image with a profile and the
1054 * value libpng calculates for the gamma of the profile does not match the
1055 * value recorded in the file. The former, sRGB, case is an error, the
1056 * latter is just a warning.
1057 */
1058 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
1059 {
1060 png_chunk_report(png_ptr, "gamma value does not match sRGB",
1061 PNG_CHUNK_ERROR);
1062 /* Do not overwrite an sRGB value */
1063 return from == 2;
1064 }
1065
1066 else /* sRGB tag not involved */
1067 {
1068 png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
1069 PNG_CHUNK_WARNING);
1070 return from == 1;
1071 }
1072 }
1073
1074 return 1;
1075 }
1076
1077 void /* PRIVATE */
1078 png_colorspace_set_gamma(png_const_structrp png_ptr,
1079 png_colorspacerp colorspace, png_fixed_point gAMA)
1080 {
1081 /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't
1082 * occur. Since the fixed point representation is assymetrical it is
1083 * possible for 1/gamma to overflow the limit of 21474 and this means the
1084 * gamma value must be at least 5/100000 and hence at most 20000.0. For
1085 * safety the limits here are a little narrower. The values are 0.00016 to
1086 * 6250.0, which are truly ridiculous gamma values (and will produce
1087 * displays that are all black or all white.)
1088 *
1089 * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
1090 * handling code, which only required the value to be >0.
1091 */
1092 png_const_charp errmsg;
1093
1094 if (gAMA < 16 || gAMA > 625000000)
1095 errmsg = "gamma value out of range";
1096
1097 # ifdef PNG_READ_gAMA_SUPPORTED
1098 /* Allow the application to set the gamma value more than once */
1099 else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
1100 (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
1101 errmsg = "duplicate";
1102 # endif
1103
1104 /* Do nothing if the colorspace is already invalid */
1105 else if (colorspace->flags & PNG_COLORSPACE_INVALID)
1106 return;
1107
1108 else
1109 {
1110 if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA, 1/*from gAMA*/))
1111 {
1112 /* Store this gamma value. */
1113 colorspace->gamma = gAMA;
1114 colorspace->flags |=
1115 (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
1116 }
1117
1118 /* At present if the check_gamma test fails the gamma of the colorspace is
1119 * not updated however the colorspace is not invalidated. This
1120 * corresponds to the case where the existing gamma comes from an sRGB
1121 * chunk or profile. An error message has already been output.
1122 */
1123 return;
1124 }
1125
1126 /* Error exit - errmsg has been set. */
1127 colorspace->flags |= PNG_COLORSPACE_INVALID;
1128 png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
1129 }
1130
1131 void /* PRIVATE */
1132 png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr)
1133 {
1134 if (info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
1135 {
1136 /* Everything is invalid */
1137 info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB|
1138 PNG_INFO_iCCP);
1139
1140 # ifdef PNG_COLORSPACE_SUPPORTED
1141 /* Clean up the iCCP profile now if it won't be used. */
1142 png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/);
1143 # else
1144 PNG_UNUSED(png_ptr)
1145 # endif
1146 }
1147
1148 else
1149 {
1150 # ifdef PNG_COLORSPACE_SUPPORTED
1151 /* Leave the INFO_iCCP flag set if the pngset.c code has already set
1152 * it; this allows a PNG to contain a profile which matches sRGB and
1153 * yet still have that profile retrievable by the application.
1154 */
1155 if (info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB)
1156 info_ptr->valid |= PNG_INFO_sRGB;
1157
1158 else
1159 info_ptr->valid &= ~PNG_INFO_sRGB;
1160
1161 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS)
1162 info_ptr->valid |= PNG_INFO_cHRM;
1163
1164 else
1165 info_ptr->valid &= ~PNG_INFO_cHRM;
1166 # endif
1167
1168 if (info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA)
1169 info_ptr->valid |= PNG_INFO_gAMA;
1170
1171 else
1172 info_ptr->valid &= ~PNG_INFO_gAMA;
1173 }
1174 }
1175
1176 #ifdef PNG_READ_SUPPORTED
1177 void /* PRIVATE */
1178 png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr)
1179 {
1180 if (info_ptr == NULL) /* reduce code size; check here not in the caller */
1181 return;
1182
1183 info_ptr->colorspace = png_ptr->colorspace;
1184 png_colorspace_sync_info(png_ptr, info_ptr);
1185 }
1186 #endif
1187 #endif
1188
1189 #ifdef PNG_COLORSPACE_SUPPORTED
1190 /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1191 * cHRM, as opposed to using chromaticities. These internal APIs return
1192 * non-zero on a parameter error. The X, Y and Z values are required to be
1193 * positive and less than 1.0.
1194 */
1195 static int
1196 png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1197 {
1198 png_int_32 d, dwhite, whiteX, whiteY;
1199
1200 d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
1201 if (!png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d)) return 1;
1202 if (!png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d)) return 1;
1203 dwhite = d;
1204 whiteX = XYZ->red_X;
1205 whiteY = XYZ->red_Y;
1206
1207 d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
1208 if (!png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d)) return 1;
1209 if (!png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d)) return 1;
1210 dwhite += d;
1211 whiteX += XYZ->green_X;
1212 whiteY += XYZ->green_Y;
1213
1214 d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
1215 if (!png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d)) return 1;
1216 if (!png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d)) return 1;
1217 dwhite += d;
1218 whiteX += XYZ->blue_X;
1219 whiteY += XYZ->blue_Y;
1220
1221 /* The reference white is simply the sum of the end-point (X,Y,Z) vectors,
1222 * thus:
1223 */
1224 if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
1225 if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
1226
1227 return 0;
1228 }
1229
1230 static int
1231 png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1232 {
1233 png_fixed_point red_inverse, green_inverse, blue_scale;
1234 png_fixed_point left, right, denominator;
1235
1236 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically
1237 * have end points with 0 tristimulus values (these are impossible end
1238 * points, but they are used to cover the possible colors.)
1239 */
1240 if (xy->redx < 0 || xy->redx > PNG_FP_1) return 1;
1241 if (xy->redy < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
1242 if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
1243 if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
1244 if (xy->bluex < 0 || xy->bluex > PNG_FP_1) return 1;
1245 if (xy->bluey < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
1246 if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
1247 if (xy->whitey < 0 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
1248
1249 /* The reverse calculation is more difficult because the original tristimulus
1250 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1251 * derived values were recorded in the cHRM chunk;
1252 * (red,green,blue,white)x(x,y). This loses one degree of freedom and
1253 * therefore an arbitrary ninth value has to be introduced to undo the
1254 * original transformations.
1255 *
1256 * Think of the original end-points as points in (X,Y,Z) space. The
1257 * chromaticity values (c) have the property:
1258 *
1259 * C
1260 * c = ---------
1261 * X + Y + Z
1262 *
1263 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
1264 * three chromaticity values (x,y,z) for each end-point obey the
1265 * relationship:
1266 *
1267 * x + y + z = 1
1268 *
1269 * This describes the plane in (X,Y,Z) space that intersects each axis at the
1270 * value 1.0; call this the chromaticity plane. Thus the chromaticity
1271 * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1272 * and chromaticity is the intersection of the vector from the origin to the
1273 * (X,Y,Z) value with the chromaticity plane.
1274 *
1275 * To fully invert the chromaticity calculation we would need the three
1276 * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1277 * were not recorded. Instead we calculated the reference white (X,Y,Z) and
1278 * recorded the chromaticity of this. The reference white (X,Y,Z) would have
1279 * given all three of the scale factors since:
1280 *
1281 * color-C = color-c * color-scale
1282 * white-C = red-C + green-C + blue-C
1283 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1284 *
1285 * But cHRM records only white-x and white-y, so we have lost the white scale
1286 * factor:
1287 *
1288 * white-C = white-c*white-scale
1289 *
1290 * To handle this the inverse transformation makes an arbitrary assumption
1291 * about white-scale:
1292 *
1293 * Assume: white-Y = 1.0
1294 * Hence: white-scale = 1/white-y
1295 * Or: red-Y + green-Y + blue-Y = 1.0
1296 *
1297 * Notice the last statement of the assumption gives an equation in three of
1298 * the nine values we want to calculate. 8 more equations come from the
1299 * above routine as summarised at the top above (the chromaticity
1300 * calculation):
1301 *
1302 * Given: color-x = color-X / (color-X + color-Y + color-Z)
1303 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1304 *
1305 * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1306 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
1307 * determinants, however this is not as bad as it seems because only 28 of
1308 * the total of 90 terms in the various matrices are non-zero. Nevertheless
1309 * Cramer's rule is notoriously numerically unstable because the determinant
1310 * calculation involves the difference of large, but similar, numbers. It is
1311 * difficult to be sure that the calculation is stable for real world values
1312 * and it is certain that it becomes unstable where the end points are close
1313 * together.
1314 *
1315 * So this code uses the perhaps slightly less optimal but more
1316 * understandable and totally obvious approach of calculating color-scale.
1317 *
1318 * This algorithm depends on the precision in white-scale and that is
1319 * (1/white-y), so we can immediately see that as white-y approaches 0 the
1320 * accuracy inherent in the cHRM chunk drops off substantially.
1321 *
1322 * libpng arithmetic: a simple invertion of the above equations
1323 * ------------------------------------------------------------
1324 *
1325 * white_scale = 1/white-y
1326 * white-X = white-x * white-scale
1327 * white-Y = 1.0
1328 * white-Z = (1 - white-x - white-y) * white_scale
1329 *
1330 * white-C = red-C + green-C + blue-C
1331 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1332 *
1333 * This gives us three equations in (red-scale,green-scale,blue-scale) where
1334 * all the coefficients are now known:
1335 *
1336 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1337 * = white-x/white-y
1338 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1339 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1340 * = (1 - white-x - white-y)/white-y
1341 *
1342 * In the last equation color-z is (1 - color-x - color-y) so we can add all
1343 * three equations together to get an alternative third:
1344 *
1345 * red-scale + green-scale + blue-scale = 1/white-y = white-scale
1346 *
1347 * So now we have a Cramer's rule solution where the determinants are just
1348 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
1349 * multiplication of three coefficients so we can't guarantee to avoid
1350 * overflow in the libpng fixed point representation. Using Cramer's rule in
1351 * floating point is probably a good choice here, but it's not an option for
1352 * fixed point. Instead proceed to simplify the first two equations by
1353 * eliminating what is likely to be the largest value, blue-scale:
1354 *
1355 * blue-scale = white-scale - red-scale - green-scale
1356 *
1357 * Hence:
1358 *
1359 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1360 * (white-x - blue-x)*white-scale
1361 *
1362 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1363 * 1 - blue-y*white-scale
1364 *
1365 * And now we can trivially solve for (red-scale,green-scale):
1366 *
1367 * green-scale =
1368 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1369 * -----------------------------------------------------------
1370 * green-x - blue-x
1371 *
1372 * red-scale =
1373 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1374 * ---------------------------------------------------------
1375 * red-y - blue-y
1376 *
1377 * Hence:
1378 *
1379 * red-scale =
1380 * ( (green-x - blue-x) * (white-y - blue-y) -
1381 * (green-y - blue-y) * (white-x - blue-x) ) / white-y
1382 * -------------------------------------------------------------------------
1383 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1384 *
1385 * green-scale =
1386 * ( (red-y - blue-y) * (white-x - blue-x) -
1387 * (red-x - blue-x) * (white-y - blue-y) ) / white-y
1388 * -------------------------------------------------------------------------
1389 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1390 *
1391 * Accuracy:
1392 * The input values have 5 decimal digits of accuracy. The values are all in
1393 * the range 0 < value < 1, so simple products are in the same range but may
1394 * need up to 10 decimal digits to preserve the original precision and avoid
1395 * underflow. Because we are using a 32-bit signed representation we cannot
1396 * match this; the best is a little over 9 decimal digits, less than 10.
1397 *
1398 * The approach used here is to preserve the maximum precision within the
1399 * signed representation. Because the red-scale calculation above uses the
1400 * difference between two products of values that must be in the range -1..+1
1401 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
1402 * factor is irrelevant in the calculation because it is applied to both
1403 * numerator and denominator.
1404 *
1405 * Note that the values of the differences of the products of the
1406 * chromaticities in the above equations tend to be small, for example for
1407 * the sRGB chromaticities they are:
1408 *
1409 * red numerator: -0.04751
1410 * green numerator: -0.08788
1411 * denominator: -0.2241 (without white-y multiplication)
1412 *
1413 * The resultant Y coefficients from the chromaticities of some widely used
1414 * color space definitions are (to 15 decimal places):
1415 *
1416 * sRGB
1417 * 0.212639005871510 0.715168678767756 0.072192315360734
1418 * Kodak ProPhoto
1419 * 0.288071128229293 0.711843217810102 0.000085653960605
1420 * Adobe RGB
1421 * 0.297344975250536 0.627363566255466 0.075291458493998
1422 * Adobe Wide Gamut RGB
1423 * 0.258728243040113 0.724682314948566 0.016589442011321
1424 */
1425 /* By the argument, above overflow should be impossible here. The return
1426 * value of 2 indicates an internal error to the caller.
1427 */
1428 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7))
1429 return 2;
1430 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7))
1431 return 2;
1432 denominator = left - right;
1433
1434 /* Now find the red numerator. */
1435 if (!png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7))
1436 return 2;
1437 if (!png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7))
1438 return 2;
1439
1440 /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1441 * chunk values. This calculation actually returns the reciprocal of the
1442 * scale value because this allows us to delay the multiplication of white-y
1443 * into the denominator, which tends to produce a small number.
1444 */
1445 if (!png_muldiv(&red_inverse, xy->whitey, denominator, left-right) ||
1446 red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1447 return 1;
1448
1449 /* Similarly for green_inverse: */
1450 if (!png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7))
1451 return 2;
1452 if (!png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7))
1453 return 2;
1454 if (!png_muldiv(&green_inverse, xy->whitey, denominator, left-right) ||
1455 green_inverse <= xy->whitey)
1456 return 1;
1457
1458 /* And the blue scale, the checks above guarantee this can't overflow but it
1459 * can still produce 0 for extreme cHRM values.
1460 */
1461 blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
1462 png_reciprocal(green_inverse);
1463 if (blue_scale <= 0) return 1;
1464
1465
1466 /* And fill in the png_XYZ: */
1467 if (!png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse)) return 1;
1468 if (!png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse)) return 1;
1469 if (!png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1470 red_inverse))
1471 return 1;
1472
1473 if (!png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse))
1474 return 1;
1475 if (!png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse))
1476 return 1;
1477 if (!png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1478 green_inverse))
1479 return 1;
1480
1481 if (!png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1)) return 1;
1482 if (!png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1)) return 1;
1483 if (!png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1484 PNG_FP_1))
1485 return 1;
1486
1487 return 0; /*success*/
1488 }
1489
1490 static int
1491 png_XYZ_normalize(png_XYZ *XYZ)
1492 {
1493 png_int_32 Y;
1494
1495 if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
1496 XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
1497 XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
1498 return 1;
1499
1500 /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
1501 * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1502 * relying on addition of two positive values producing a negative one is not
1503 * safe.
1504 */
1505 Y = XYZ->red_Y;
1506 if (0x7fffffff - Y < XYZ->green_X) return 1;
1507 Y += XYZ->green_Y;
1508 if (0x7fffffff - Y < XYZ->blue_X) return 1;
1509 Y += XYZ->blue_Y;
1510
1511 if (Y != PNG_FP_1)
1512 {
1513 if (!png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y)) return 1;
1514 if (!png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y)) return 1;
1515 if (!png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y)) return 1;
1516
1517 if (!png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y)) return 1;
1518 if (!png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y)) return 1;
1519 if (!png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y)) return 1;
1520
1521 if (!png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y)) return 1;
1522 if (!png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y)) return 1;
1523 if (!png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y)) return 1;
1524 }
1525
1526 return 0;
1527 }
1528
1529 static int
1530 png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta)
1531 {
1532 /* Allow an error of +/-0.01 (absolute value) on each chromaticity */
1533 return !(PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
1534 PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
1535 PNG_OUT_OF_RANGE(xy1->redx, xy2->redx, delta) ||
1536 PNG_OUT_OF_RANGE(xy1->redy, xy2->redy, delta) ||
1537 PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
1538 PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
1539 PNG_OUT_OF_RANGE(xy1->bluex, xy2->bluex, delta) ||
1540 PNG_OUT_OF_RANGE(xy1->bluey, xy2->bluey, delta));
1541 }
1542
1543 /* Added in libpng-1.6.0, a different check for the validity of a set of cHRM
1544 * chunk chromaticities. Earlier checks used to simply look for the overflow
1545 * condition (where the determinant of the matrix to solve for XYZ ends up zero
1546 * because the chromaticity values are not all distinct.) Despite this it is
1547 * theoretically possible to produce chromaticities that are apparently valid
1548 * but that rapidly degrade to invalid, potentially crashing, sets because of
1549 * arithmetic inaccuracies when calculations are performed on them. The new
1550 * check is to round-trip xy -> XYZ -> xy and then check that the result is
1551 * within a small percentage of the original.
1552 */
1553 static int
1554 png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy)
1555 {
1556 int result;
1557 png_xy xy_test;
1558
1559 /* As a side-effect this routine also returns the XYZ endpoints. */
1560 result = png_XYZ_from_xy(XYZ, xy);
1561 if (result) return result;
1562
1563 result = png_xy_from_XYZ(&xy_test, XYZ);
1564 if (result) return result;
1565
1566 if (png_colorspace_endpoints_match(xy, &xy_test,
1567 5/*actually, the math is pretty accurate*/))
1568 return 0;
1569
1570 /* Too much slip */
1571 return 1;
1572 }
1573
1574 /* This is the check going the other way. The XYZ is modified to normalize it
1575 * (another side-effect) and the xy chromaticities are returned.
1576 */
1577 static int
1578 png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ)
1579 {
1580 int result;
1581 png_XYZ XYZtemp;
1582
1583 result = png_XYZ_normalize(XYZ);
1584 if (result) return result;
1585
1586 result = png_xy_from_XYZ(xy, XYZ);
1587 if (result) return result;
1588
1589 XYZtemp = *XYZ;
1590 return png_colorspace_check_xy(&XYZtemp, xy);
1591 }
1592
1593 /* Used to check for an endpoint match against sRGB */
1594 static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
1595 {
1596 /* color x y */
1597 /* red */ 64000, 33000,
1598 /* green */ 30000, 60000,
1599 /* blue */ 15000, 6000,
1600 /* white */ 31270, 32900
1601 };
1602
1603 static int
1604 png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr,
1605 png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
1606 int preferred)
1607 {
1608 if (colorspace->flags & PNG_COLORSPACE_INVALID)
1609 return 0;
1610
1611 /* The consistency check is performed on the chromaticities; this factors out
1612 * variations because of the normalization (or not) of the end point Y
1613 * values.
1614 */
1615 if (preferred < 2 && (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS))
1616 {
1617 /* The end points must be reasonably close to any we already have. The
1618 * following allows an error of up to +/-.001
1619 */
1620 if (!png_colorspace_endpoints_match(xy, &colorspace->end_points_xy, 100))
1621 {
1622 colorspace->flags |= PNG_COLORSPACE_INVALID;
1623 png_benign_error(png_ptr, "inconsistent chromaticities");
1624 return 0; /* failed */
1625 }
1626
1627 /* Only overwrite with preferred values */
1628 if (!preferred)
1629 return 1; /* ok, but no change */
1630 }
1631
1632 colorspace->end_points_xy = *xy;
1633 colorspace->end_points_XYZ = *XYZ;
1634 colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
1635
1636 /* The end points are normally quoted to two decimal digits, so allow +/-0.01
1637 * on this test.
1638 */
1639 if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000))
1640 colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
1641
1642 else
1643 colorspace->flags &= PNG_COLORSPACE_CANCEL(
1644 PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1645
1646 return 2; /* ok and changed */
1647 }
1648
1649 int /* PRIVATE */
1650 png_colorspace_set_chromaticities(png_const_structrp png_ptr,
1651 png_colorspacerp colorspace, const png_xy *xy, int preferred)
1652 {
1653 /* We must check the end points to ensure they are reasonable - in the past
1654 * color management systems have crashed as a result of getting bogus
1655 * colorant values, while this isn't the fault of libpng it is the
1656 * responsibility of libpng because PNG carries the bomb and libpng is in a
1657 * position to protect against it.
1658 */
1659 png_XYZ XYZ;
1660
1661 switch (png_colorspace_check_xy(&XYZ, xy))
1662 {
1663 case 0: /* success */
1664 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
1665 preferred);
1666
1667 case 1:
1668 /* We can't invert the chromaticities so we can't produce value XYZ
1669 * values. Likely as not a color management system will fail too.
1670 */
1671 colorspace->flags |= PNG_COLORSPACE_INVALID;
1672 png_benign_error(png_ptr, "invalid chromaticities");
1673 break;
1674
1675 default:
1676 /* libpng is broken; this should be a warning but if it happens we
1677 * want error reports so for the moment it is an error.
1678 */
1679 colorspace->flags |= PNG_COLORSPACE_INVALID;
1680 png_error(png_ptr, "internal error checking chromaticities");
1681 break;
1682 }
1683
1684 return 0; /* failed */
1685 }
1686
1687 int /* PRIVATE */
1688 png_colorspace_set_endpoints(png_const_structrp png_ptr,
1689 png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
1690 {
1691 png_XYZ XYZ = *XYZ_in;
1692 png_xy xy;
1693
1694 switch (png_colorspace_check_XYZ(&xy, &XYZ))
1695 {
1696 case 0:
1697 return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
1698 preferred);
1699
1700 case 1:
1701 /* End points are invalid. */
1702 colorspace->flags |= PNG_COLORSPACE_INVALID;
1703 png_benign_error(png_ptr, "invalid end points");
1704 break;
1705
1706 default:
1707 colorspace->flags |= PNG_COLORSPACE_INVALID;
1708 png_error(png_ptr, "internal error checking chromaticities");
1709 break;
1710 }
1711
1712 return 0; /* failed */
1713 }
1714
1715 #if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED)
1716 /* Error message generation */
1717 static char
1718 png_icc_tag_char(png_uint_32 byte)
1719 {
1720 byte &= 0xff;
1721 if (byte >= 32 && byte <= 126)
1722 return (char)byte;
1723 else
1724 return '?';
1725 }
1726
1727 static void
1728 png_icc_tag_name(char *name, png_uint_32 tag)
1729 {
1730 name[0] = '\'';
1731 name[1] = png_icc_tag_char(tag >> 24);
1732 name[2] = png_icc_tag_char(tag >> 16);
1733 name[3] = png_icc_tag_char(tag >> 8);
1734 name[4] = png_icc_tag_char(tag );
1735 name[5] = '\'';
1736 }
1737
1738 static int
1739 is_ICC_signature_char(png_alloc_size_t it)
1740 {
1741 return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1742 (it >= 97 && it <= 122);
1743 }
1744
1745 static int
1746 is_ICC_signature(png_alloc_size_t it)
1747 {
1748 return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1749 is_ICC_signature_char((it >> 16) & 0xff) &&
1750 is_ICC_signature_char((it >> 8) & 0xff) &&
1751 is_ICC_signature_char(it & 0xff);
1752 }
1753
1754 static int
1755 png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace,
1756 png_const_charp name, png_alloc_size_t value, png_const_charp reason)
1757 {
1758 size_t pos;
1759 char message[196]; /* see below for calculation */
1760
1761 if (colorspace != NULL)
1762 colorspace->flags |= PNG_COLORSPACE_INVALID;
1763
1764 pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1765 pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1766 pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1767 if (is_ICC_signature(value))
1768 {
1769 /* So 'value' is at most 4 bytes and the following cast is safe */
1770 png_icc_tag_name(message+pos, (png_uint_32)value);
1771 pos += 6; /* total +8; less than the else clause */
1772 message[pos++] = ':';
1773 message[pos++] = ' ';
1774 }
1775 # ifdef PNG_WARNINGS_SUPPORTED
1776 else
1777 {
1778 char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/
1779
1780 pos = png_safecat(message, (sizeof message), pos,
1781 png_format_number(number, number+(sizeof number),
1782 PNG_NUMBER_FORMAT_x, value));
1783 pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/
1784 }
1785 # endif
1786 /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1787 pos = png_safecat(message, (sizeof message), pos, reason);
1788 PNG_UNUSED(pos)
1789
1790 /* This is recoverable, but make it unconditionally an app_error on write to
1791 * avoid writing invalid ICC profiles into PNG files. (I.e. we handle them
1792 * on read, with a warning, but on write unless the app turns off
1793 * application errors the PNG won't be written.)
1794 */
1795 png_chunk_report(png_ptr, message,
1796 (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
1797
1798 return 0;
1799 }
1800 #endif /* sRGB || iCCP */
1801
1802 #ifdef PNG_sRGB_SUPPORTED
1803 int /* PRIVATE */
1804 png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace,
1805 int intent)
1806 {
1807 /* sRGB sets known gamma, end points and (from the chunk) intent. */
1808 /* IMPORTANT: these are not necessarily the values found in an ICC profile
1809 * because ICC profiles store values adapted to a D50 environment; it is
1810 * expected that the ICC profile mediaWhitePointTag will be D50, see the
1811 * checks and code elsewhere to understand this better.
1812 *
1813 * These XYZ values, which are accurate to 5dp, produce rgb to gray
1814 * coefficients of (6968,23435,2366), which are reduced (because they add up
1815 * to 32769 not 32768) to (6968,23434,2366). These are the values that
1816 * libpng has traditionally used (and are the best values given the 15bit
1817 * algorithm used by the rgb to gray code.)
1818 */
1819 static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */
1820 {
1821 /* color X Y Z */
1822 /* red */ 41239, 21264, 1933,
1823 /* green */ 35758, 71517, 11919,
1824 /* blue */ 18048, 7219, 95053
1825 };
1826
1827 /* Do nothing if the colorspace is already invalidated. */
1828 if (colorspace->flags & PNG_COLORSPACE_INVALID)
1829 return 0;
1830
1831 /* Check the intent, then check for existing settings. It is valid for the
1832 * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
1833 * be consistent with the correct values. If, however, this function is
1834 * called below because an iCCP chunk matches sRGB then it is quite
1835 * conceivable that an older app recorded incorrect gAMA and cHRM because of
1836 * an incorrect calculation based on the values in the profile - this does
1837 * *not* invalidate the profile (though it still produces an error, which can
1838 * be ignored.)
1839 */
1840 if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST)
1841 return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1842 (unsigned)intent, "invalid sRGB rendering intent");
1843
1844 if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 &&
1845 colorspace->rendering_intent != intent)
1846 return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1847 (unsigned)intent, "inconsistent rendering intents");
1848
1849 if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0)
1850 {
1851 png_benign_error(png_ptr, "duplicate sRGB information ignored");
1852 return 0;
1853 }
1854
1855 /* If the standard sRGB cHRM chunk does not match the one from the PNG file
1856 * warn but overwrite the value with the correct one.
1857 */
1858 if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 &&
1859 !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
1860 100))
1861 png_chunk_report(png_ptr, "cHRM chunk does not match sRGB",
1862 PNG_CHUNK_ERROR);
1863
1864 /* This check is just done for the error reporting - the routine always
1865 * returns true when the 'from' argument corresponds to sRGB (2).
1866 */
1867 (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE,
1868 2/*from sRGB*/);
1869
1870 /* intent: bugs in GCC force 'int' to be used as the parameter type. */
1871 colorspace->rendering_intent = (png_uint_16)intent;
1872 colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT;
1873
1874 /* endpoints */
1875 colorspace->end_points_xy = sRGB_xy;
1876 colorspace->end_points_XYZ = sRGB_XYZ;
1877 colorspace->flags |=
1878 (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1879
1880 /* gamma */
1881 colorspace->gamma = PNG_GAMMA_sRGB_INVERSE;
1882 colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA;
1883
1884 /* Finally record that we have an sRGB profile */
1885 colorspace->flags |=
1886 (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB);
1887
1888 return 1; /* set */
1889 }
1890 #endif /* sRGB */
1891
1892 #ifdef PNG_iCCP_SUPPORTED
1893 /* Encoded value of D50 as an ICC XYZNumber. From the ICC 2010 spec the value
1894 * is XYZ(0.9642,1.0,0.8249), which scales to:
1895 *
1896 * (63189.8112, 65536, 54060.6464)
1897 */
1898 static const png_byte D50_nCIEXYZ[12] =
1899 { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1900
1901 int /* PRIVATE */
1902 png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1903 png_const_charp name, png_uint_32 profile_length)
1904 {
1905 if (profile_length < 132)
1906 return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1907 "too short");
1908
1909 if (profile_length & 3)
1910 return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1911 "invalid length");
1912
1913 return 1;
1914 }
1915
1916 int /* PRIVATE */
1917 png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace,
1918 png_const_charp name, png_uint_32 profile_length,
1919 png_const_bytep profile/* first 132 bytes only */, int color_type)
1920 {
1921 png_uint_32 temp;
1922
1923 /* Length check; this cannot be ignored in this code because profile_length
1924 * is used later to check the tag table, so even if the profile seems over
1925 * long profile_length from the caller must be correct. The caller can fix
1926 * this up on read or write by just passing in the profile header length.
1927 */
1928 temp = png_get_uint_32(profile);
1929 if (temp != profile_length)
1930 return png_icc_profile_error(png_ptr, colorspace, name, temp,
1931 "length does not match profile");
1932
1933 temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
1934 if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
1935 profile_length < 132+12*temp) /* truncated tag table */
1936 return png_icc_profile_error(png_ptr, colorspace, name, temp,
1937 "tag count too large");
1938
1939 /* The 'intent' must be valid or we can't store it, ICC limits the intent to
1940 * 16 bits.
1941 */
1942 temp = png_get_uint_32(profile+64);
1943 if (temp >= 0xffff) /* The ICC limit */
1944 return png_icc_profile_error(png_ptr, colorspace, name, temp,
1945 "invalid rendering intent");
1946
1947 /* This is just a warning because the profile may be valid in future
1948 * versions.
1949 */
1950 if (temp >= PNG_sRGB_INTENT_LAST)
1951 (void)png_icc_profile_error(png_ptr, NULL, name, temp,
1952 "intent outside defined range");
1953
1954 /* At this point the tag table can't be checked because it hasn't necessarily
1955 * been loaded; however, various header fields can be checked. These checks
1956 * are for values permitted by the PNG spec in an ICC profile; the PNG spec
1957 * restricts the profiles that can be passed in an iCCP chunk (they must be
1958 * appropriate to processing PNG data!)
1959 */
1960
1961 /* Data checks (could be skipped). These checks must be independent of the
1962 * version number; however, the version number doesn't accomodate changes in
1963 * the header fields (just the known tags and the interpretation of the
1964 * data.)
1965 */
1966 temp = png_get_uint_32(profile+36); /* signature 'ascp' */
1967 if (temp != 0x61637370)
1968 return png_icc_profile_error(png_ptr, colorspace, name, temp,
1969 "invalid signature");
1970
1971 /* Currently the PCS illuminant/adopted white point (the computational
1972 * white point) are required to be D50,
1973 * however the profile contains a record of the illuminant so perhaps ICC
1974 * expects to be able to change this in the future (despite the rationale in
1975 * the introduction for using a fixed PCS adopted white.) Consequently the
1976 * following is just a warning.
1977 */
1978 if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
1979 (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
1980 "PCS illuminant is not D50");
1981
1982 /* The PNG spec requires this:
1983 * "If the iCCP chunk is present, the image samples conform to the colour
1984 * space represented by the embedded ICC profile as defined by the
1985 * International Color Consortium [ICC]. The colour space of the ICC profile
1986 * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
1987 * 6), or a greyscale colour space for greyscale images (PNG colour types 0
1988 * and 4)."
1989 *
1990 * This checking code ensures the embedded profile (on either read or write)
1991 * conforms to the specification requirements. Notice that an ICC 'gray'
1992 * color-space profile contains the information to transform the monochrome
1993 * data to XYZ or L*a*b (according to which PCS the profile uses) and this
1994 * should be used in preference to the standard libpng K channel replication
1995 * into R, G and B channels.
1996 *
1997 * Previously it was suggested that an RGB profile on grayscale data could be
1998 * handled. However it it is clear that using an RGB profile in this context
1999 * must be an error - there is no specification of what it means. Thus it is
2000 * almost certainly more correct to ignore the profile.
2001 */
2002 temp = png_get_uint_32(profile+16); /* data colour space field */
2003 switch (temp)
2004 {
2005 case 0x52474220: /* 'RGB ' */
2006 if (!(color_type & PNG_COLOR_MASK_COLOR))
2007 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2008 "RGB color space not permitted on grayscale PNG");
2009 break;
2010
2011 case 0x47524159: /* 'GRAY' */
2012 if (color_type & PNG_COLOR_MASK_COLOR)
2013 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2014 "Gray color space not permitted on RGB PNG");
2015 break;
2016
2017 default:
2018 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2019 "invalid ICC profile color space");
2020 }
2021
2022 /* It is up to the application to check that the profile class matches the
2023 * application requirements; the spec provides no guidance, but it's pretty
2024 * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
2025 * ('prtr') or 'spac' (for generic color spaces). Issue a warning in these
2026 * cases. Issue an error for device link or abstract profiles - these don't
2027 * contain the records necessary to transform the color-space to anything
2028 * other than the target device (and not even that for an abstract profile).
2029 * Profiles of these classes may not be embedded in images.
2030 */
2031 temp = png_get_uint_32(profile+12); /* profile/device class */
2032 switch (temp)
2033 {
2034 case 0x73636E72: /* 'scnr' */
2035 case 0x6D6E7472: /* 'mntr' */
2036 case 0x70727472: /* 'prtr' */
2037 case 0x73706163: /* 'spac' */
2038 /* All supported */
2039 break;
2040
2041 case 0x61627374: /* 'abst' */
2042 /* May not be embedded in an image */
2043 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2044 "invalid embedded Abstract ICC profile");
2045
2046 case 0x6C696E6B: /* 'link' */
2047 /* DeviceLink profiles cannnot be interpreted in a non-device specific
2048 * fashion, if an app uses the AToB0Tag in the profile the results are
2049 * undefined unless the result is sent to the intended device,
2050 * therefore a DeviceLink profile should not be found embedded in a
2051 * PNG.
2052 */
2053 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2054 "unexpected DeviceLink ICC profile class");
2055
2056 case 0x6E6D636C: /* 'nmcl' */
2057 /* A NamedColor profile is also device specific, however it doesn't
2058 * contain an AToB0 tag that is open to misintrepretation. Almost
2059 * certainly it will fail the tests below.
2060 */
2061 (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2062 "unexpected NamedColor ICC profile class");
2063 break;
2064
2065 default:
2066 /* To allow for future enhancements to the profile accept unrecognized
2067 * profile classes with a warning, these then hit the test below on the
2068 * tag content to ensure they are backward compatible with one of the
2069 * understood profiles.
2070 */
2071 (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2072 "unrecognized ICC profile class");
2073 break;
2074 }
2075
2076 /* For any profile other than a device link one the PCS must be encoded
2077 * either in XYZ or Lab.
2078 */
2079 temp = png_get_uint_32(profile+20);
2080 switch (temp)
2081 {
2082 case 0x58595A20: /* 'XYZ ' */
2083 case 0x4C616220: /* 'Lab ' */
2084 break;
2085
2086 default:
2087 return png_icc_profile_error(png_ptr, colorspace, name, temp,
2088 "unexpected ICC PCS encoding");
2089 }
2090
2091 return 1;
2092 }
2093
2094 int /* PRIVATE */
2095 png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace,
2096 png_const_charp name, png_uint_32 profile_length,
2097 png_const_bytep profile /* header plus whole tag table */)
2098 {
2099 png_uint_32 tag_count = png_get_uint_32(profile+128);
2100 png_uint_32 itag;
2101 png_const_bytep tag = profile+132; /* The first tag */
2102
2103 /* First scan all the tags in the table and add bits to the icc_info value
2104 * (temporarily in 'tags').
2105 */
2106 for (itag=0; itag < tag_count; ++itag, tag += 12)
2107 {
2108 png_uint_32 tag_id = png_get_uint_32(tag+0);
2109 png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
2110 png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
2111
2112 /* The ICC specification does not exclude zero length tags, therefore the
2113 * start might actually be anywhere if there is no data, but this would be
2114 * a clear abuse of the intent of the standard so the start is checked for
2115 * being in range. All defined tag types have an 8 byte header - a 4 byte
2116 * type signature then 0.
2117 */
2118 if ((tag_start & 3) != 0)
2119 {
2120 /* CNHP730S.icc shipped with Microsoft Windows 64 violates this, it is
2121 * only a warning here because libpng does not care about the
2122 * alignment.
2123 */
2124 (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
2125 "ICC profile tag start not a multiple of 4");
2126 }
2127
2128 /* This is a hard error; potentially it can cause read outside the
2129 * profile.
2130 */
2131 if (tag_start > profile_length || tag_length > profile_length - tag_start)
2132 return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
2133 "ICC profile tag outside profile");
2134 }
2135
2136 return 1; /* success, maybe with warnings */
2137 }
2138
2139 #ifdef PNG_sRGB_SUPPORTED
2140 /* Information about the known ICC sRGB profiles */
2141 static const struct
2142 {
2143 png_uint_32 adler, crc, length;
2144 png_uint_32 md5[4];
2145 png_byte have_md5;
2146 png_byte is_broken;
2147 png_uint_16 intent;
2148
2149 # define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
2150 # define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
2151 { adler, crc, length, md5, broke, intent },
2152
2153 } png_sRGB_checks[] =
2154 {
2155 /* This data comes from contrib/tools/checksum-icc run on downloads of
2156 * all four ICC sRGB profiles from www.color.org.
2157 */
2158 /* adler32, crc32, MD5[4], intent, date, length, file-name */
2159 PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
2160 PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
2161 "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
2162
2163 /* ICC sRGB v2 perceptual no black-compensation: */
2164 PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
2165 PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
2166 "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
2167
2168 PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
2169 PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
2170 "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
2171
2172 /* ICC sRGB v4 perceptual */
2173 PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
2174 PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
2175 "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
2176
2177 /* The following profiles have no known MD5 checksum. If there is a match
2178 * on the (empty) MD5 the other fields are used to attempt a match and
2179 * a warning is produced. The first two of these profiles have a 'cprt' tag
2180 * which suggests that they were also made by Hewlett Packard.
2181 */
2182 PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
2183 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
2184 "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
2185
2186 /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
2187 * match the D50 PCS illuminant in the header (it is in fact the D65 values,
2188 * so the white point is recorded as the un-adapted value.) The profiles
2189 * below only differ in one byte - the intent - and are basically the same as
2190 * the previous profile except for the mediaWhitePointTag error and a missing
2191 * chromaticAdaptationTag.
2192 */
2193 PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
2194 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
2195 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
2196
2197 PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
2198 PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
2199 "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
2200 };
2201
2202 static int
2203 png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr,
2204 png_const_bytep profile, uLong adler)
2205 {
2206 /* The quick check is to verify just the MD5 signature and trust the
2207 * rest of the data. Because the profile has already been verified for
2208 * correctness this is safe. png_colorspace_set_sRGB will check the 'intent'
2209 * field too, so if the profile has been edited with an intent not defined
2210 * by sRGB (but maybe defined by a later ICC specification) the read of
2211 * the profile will fail at that point.
2212 */
2213 png_uint_32 length = 0;
2214 png_uint_32 intent = 0x10000; /* invalid */
2215 #if PNG_sRGB_PROFILE_CHECKS > 1
2216 uLong crc = 0; /* the value for 0 length data */
2217 #endif
2218 unsigned int i;
2219
2220 for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
2221 {
2222 if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
2223 png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
2224 png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
2225 png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
2226 {
2227 /* This may be one of the old HP profiles without an MD5, in that
2228 * case we can only use the length and Adler32 (note that these
2229 * are not used by default if there is an MD5!)
2230 */
2231 # if PNG_sRGB_PROFILE_CHECKS == 0
2232 if (png_sRGB_checks[i].have_md5)
2233 return 1+png_sRGB_checks[i].is_broken;
2234 # endif
2235
2236 /* Profile is unsigned or more checks have been configured in. */
2237 if (length == 0)
2238 {
2239 length = png_get_uint_32(profile);
2240 intent = png_get_uint_32(profile+64);
2241 }
2242
2243 /* Length *and* intent must match */
2244 if (length == png_sRGB_checks[i].length &&
2245 intent == png_sRGB_checks[i].intent)
2246 {
2247 /* Now calculate the adler32 if not done already. */
2248 if (adler == 0)
2249 {
2250 adler = adler32(0, NULL, 0);
2251 adler = adler32(adler, profile, length);
2252 }
2253
2254 if (adler == png_sRGB_checks[i].adler)
2255 {
2256 /* These basic checks suggest that the data has not been
2257 * modified, but if the check level is more than 1 perform
2258 * our own crc32 checksum on the data.
2259 */
2260 # if PNG_sRGB_PROFILE_CHECKS > 1
2261 if (crc == 0)
2262 {
2263 crc = crc32(0, NULL, 0);
2264 crc = crc32(crc, profile, length);
2265 }
2266
2267 /* So this check must pass for the 'return' below to happen.
2268 */
2269 if (crc == png_sRGB_checks[i].crc)
2270 # endif
2271 {
2272 if (png_sRGB_checks[i].is_broken)
2273 {
2274 /* These profiles are known to have bad data that may cause
2275 * problems if they are used, therefore attempt to
2276 * discourage their use, skip the 'have_md5' warning below,
2277 * which is made irrelevant by this error.
2278 */
2279 png_chunk_report(png_ptr, "known incorrect sRGB profile",
2280 PNG_CHUNK_ERROR);
2281 }
2282
2283 /* Warn that this being done; this isn't even an error since
2284 * the profile is perfectly valid, but it would be nice if
2285 * people used the up-to-date ones.
2286 */
2287 else if (!png_sRGB_checks[i].have_md5)
2288 {
2289 png_chunk_report(png_ptr,
2290 "out-of-date sRGB profile with no signature",
2291 PNG_CHUNK_WARNING);
2292 }
2293
2294 return 1+png_sRGB_checks[i].is_broken;
2295 }
2296 }
2297 }
2298
2299 # if PNG_sRGB_PROFILE_CHECKS > 0
2300 /* The signature matched, but the profile had been changed in some
2301 * way. This probably indicates a data error or uninformed hacking.
2302 * Fall through to "no match".
2303 */
2304 png_chunk_report(png_ptr,
2305 "Not recognizing known sRGB profile that has been edited",
2306 PNG_CHUNK_WARNING);
2307 break;
2308 # endif
2309 }
2310 }
2311
2312 return 0; /* no match */
2313 }
2314 #endif
2315
2316 #ifdef PNG_sRGB_SUPPORTED
2317 void /* PRIVATE */
2318 png_icc_set_sRGB(png_const_structrp png_ptr,
2319 png_colorspacerp colorspace, png_const_bytep profile, uLong adler)
2320 {
2321 /* Is this profile one of the known ICC sRGB profiles? If it is, just set
2322 * the sRGB information.
2323 */
2324 if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler))
2325 (void)png_colorspace_set_sRGB(png_ptr, colorspace,
2326 (int)/*already checked*/png_get_uint_32(profile+64));
2327 }
2328 #endif /* PNG_READ_sRGB_SUPPORTED */
2329
2330 int /* PRIVATE */
2331 png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace,
2332 png_const_charp name, png_uint_32 profile_length, png_const_bytep profile,
2333 int color_type)
2334 {
2335 if (colorspace->flags & PNG_COLORSPACE_INVALID)
2336 return 0;
2337
2338 if (png_icc_check_length(png_ptr, colorspace, name, profile_length) &&
2339 png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
2340 color_type) &&
2341 png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
2342 profile))
2343 {
2344 # ifdef PNG_sRGB_SUPPORTED
2345 /* If no sRGB support, don't try storing sRGB information */
2346 png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
2347 # endif
2348 return 1;
2349 }
2350
2351 /* Failure case */
2352 return 0;
2353 }
2354 #endif /* iCCP */
2355
2356 #ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
2357 void /* PRIVATE */
2358 png_colorspace_set_rgb_coefficients(png_structrp png_ptr)
2359 {
2360 /* Set the rgb_to_gray coefficients from the colorspace. */
2361 if (!png_ptr->rgb_to_gray_coefficients_set &&
2362 (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
2363 {
2364 /* png_set_background has not been called, get the coefficients from the Y
2365 * values of the colorspace colorants.
2366 */
2367 png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
2368 png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
2369 png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
2370 png_fixed_point total = r+g+b;
2371
2372 if (total > 0 &&
2373 r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
2374 g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
2375 b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
2376 r+g+b <= 32769)
2377 {
2378 /* We allow 0 coefficients here. r+g+b may be 32769 if two or
2379 * all of the coefficients were rounded up. Handle this by
2380 * reducing the *largest* coefficient by 1; this matches the
2381 * approach used for the default coefficients in pngrtran.c
2382 */
2383 int add = 0;
2384
2385 if (r+g+b > 32768)
2386 add = -1;
2387 else if (r+g+b < 32768)
2388 add = 1;
2389
2390 if (add != 0)
2391 {
2392 if (g >= r && g >= b)
2393 g += add;
2394 else if (r >= g && r >= b)
2395 r += add;
2396 else
2397 b += add;
2398 }
2399
2400 /* Check for an internal error. */
2401 if (r+g+b != 32768)
2402 png_error(png_ptr,
2403 "internal error handling cHRM coefficients");
2404
2405 else
2406 {
2407 png_ptr->rgb_to_gray_red_coeff = (png_uint_16)r;
2408 png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
2409 }
2410 }
2411
2412 /* This is a png_error at present even though it could be ignored -
2413 * it should never happen, but it is important that if it does, the
2414 * bug is fixed.
2415 */
2416 else
2417 png_error(png_ptr, "internal error handling cHRM->XYZ");
2418 }
2419 }
2420 #endif
2421
2422 #endif /* COLORSPACE */
2423
2424 void /* PRIVATE */
2425 png_check_IHDR(png_const_structrp png_ptr,
2426 png_uint_32 width, png_uint_32 height, int bit_depth,
2427 int color_type, int interlace_type, int compression_type,
2428 int filter_type)
2429 {
2430 int error = 0;
2431
2432 /* Check for width and height valid values */
2433 if (width == 0)
2434 {
2435 png_warning(png_ptr, "Image width is zero in IHDR");
2436 error = 1;
2437 }
2438
2439 if (height == 0)
2440 {
2441 png_warning(png_ptr, "Image height is zero in IHDR");
2442 error = 1;
2443 }
2444
2445 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
2446 if (width > png_ptr->user_width_max)
2447
2448 # else
2449 if (width > PNG_USER_WIDTH_MAX)
2450 # endif
2451 {
2452 png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2453 error = 1;
2454 }
2455
2456 # ifdef PNG_SET_USER_LIMITS_SUPPORTED
2457 if (height > png_ptr->user_height_max)
2458 # else
2459 if (height > PNG_USER_HEIGHT_MAX)
2460 # endif
2461 {
2462 png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2463 error = 1;
2464 }
2465
2466 if (width > PNG_UINT_31_MAX)
2467 {
2468 png_warning(png_ptr, "Invalid image width in IHDR");
2469 error = 1;
2470 }
2471
2472 if (height > PNG_UINT_31_MAX)
2473 {
2474 png_warning(png_ptr, "Invalid image height in IHDR");
2475 error = 1;
2476 }
2477
2478 /* Check other values */
2479 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2480 bit_depth != 8 && bit_depth != 16)
2481 {
2482 png_warning(png_ptr, "Invalid bit depth in IHDR");
2483 error = 1;
2484 }
2485
2486 if (color_type < 0 || color_type == 1 ||
2487 color_type == 5 || color_type > 6)
2488 {
2489 png_warning(png_ptr, "Invalid color type in IHDR");
2490 error = 1;
2491 }
2492
2493 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2494 ((color_type == PNG_COLOR_TYPE_RGB ||
2495 color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2496 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2497 {
2498 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2499 error = 1;
2500 }
2501
2502 if (interlace_type >= PNG_INTERLACE_LAST)
2503 {
2504 png_warning(png_ptr, "Unknown interlace method in IHDR");
2505 error = 1;
2506 }
2507
2508 if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2509 {
2510 png_warning(png_ptr, "Unknown compression method in IHDR");
2511 error = 1;
2512 }
2513
2514 # ifdef PNG_MNG_FEATURES_SUPPORTED
2515 /* Accept filter_method 64 (intrapixel differencing) only if
2516 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2517 * 2. Libpng did not read a PNG signature (this filter_method is only
2518 * used in PNG datastreams that are embedded in MNG datastreams) and
2519 * 3. The application called png_permit_mng_features with a mask that
2520 * included PNG_FLAG_MNG_FILTER_64 and
2521 * 4. The filter_method is 64 and
2522 * 5. The color_type is RGB or RGBA
2523 */
2524 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
2525 png_ptr->mng_features_permitted)
2526 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2527
2528 if (filter_type != PNG_FILTER_TYPE_BASE)
2529 {
2530 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
2531 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2532 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2533 (color_type == PNG_COLOR_TYPE_RGB ||
2534 color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2535 {
2536 png_warning(png_ptr, "Unknown filter method in IHDR");
2537 error = 1;
2538 }
2539
2540 if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
2541 {
2542 png_warning(png_ptr, "Invalid filter method in IHDR");
2543 error = 1;
2544 }
2545 }
2546
2547 # else
2548 if (filter_type != PNG_FILTER_TYPE_BASE)
2549 {
2550 png_warning(png_ptr, "Unknown filter method in IHDR");
2551 error = 1;
2552 }
2553 # endif
2554
2555 if (error == 1)
2556 png_error(png_ptr, "Invalid IHDR data");
2557 }
2558
2559 #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2560 /* ASCII to fp functions */
2561 /* Check an ASCII formated floating point value, see the more detailed
2562 * comments in pngpriv.h
2563 */
2564 /* The following is used internally to preserve the sticky flags */
2565 #define png_fp_add(state, flags) ((state) |= (flags))
2566 #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2567
2568 int /* PRIVATE */
2569 png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
2570 png_size_tp whereami)
2571 {
2572 int state = *statep;
2573 png_size_t i = *whereami;
2574
2575 while (i < size)
2576 {
2577 int type;
2578 /* First find the type of the next character */
2579 switch (string[i])
2580 {
2581 case 43: type = PNG_FP_SAW_SIGN; break;
2582 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2583 case 46: type = PNG_FP_SAW_DOT; break;
2584 case 48: type = PNG_FP_SAW_DIGIT; break;
2585 case 49: case 50: case 51: case 52:
2586 case 53: case 54: case 55: case 56:
2587 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2588 case 69:
2589 case 101: type = PNG_FP_SAW_E; break;
2590 default: goto PNG_FP_End;
2591 }
2592
2593 /* Now deal with this type according to the current
2594 * state, the type is arranged to not overlap the
2595 * bits of the PNG_FP_STATE.
2596 */
2597 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2598 {
2599 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2600 if (state & PNG_FP_SAW_ANY)
2601 goto PNG_FP_End; /* not a part of the number */
2602
2603 png_fp_add(state, type);
2604 break;
2605
2606 case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2607 /* Ok as trailer, ok as lead of fraction. */
2608 if (state & PNG_FP_SAW_DOT) /* two dots */
2609 goto PNG_FP_End;
2610
2611 else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
2612 png_fp_add(state, type);
2613
2614 else
2615 png_fp_set(state, PNG_FP_FRACTION | type);
2616
2617 break;
2618
2619 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2620 if (state & PNG_FP_SAW_DOT) /* delayed fraction */
2621 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2622
2623 png_fp_add(state, type | PNG_FP_WAS_VALID);
2624
2625 break;
2626
2627 case PNG_FP_INTEGER + PNG_FP_SAW_E:
2628 if ((state & PNG_FP_SAW_DIGIT) == 0)
2629 goto PNG_FP_End;
2630
2631 png_fp_set(state, PNG_FP_EXPONENT);
2632
2633 break;
2634
2635 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2636 goto PNG_FP_End; ** no sign in fraction */
2637
2638 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2639 goto PNG_FP_End; ** Because SAW_DOT is always set */
2640
2641 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2642 png_fp_add(state, type | PNG_FP_WAS_VALID);
2643 break;
2644
2645 case PNG_FP_FRACTION + PNG_FP_SAW_E:
2646 /* This is correct because the trailing '.' on an
2647 * integer is handled above - so we can only get here
2648 * with the sequence ".E" (with no preceding digits).
2649 */
2650 if ((state & PNG_FP_SAW_DIGIT) == 0)
2651 goto PNG_FP_End;
2652
2653 png_fp_set(state, PNG_FP_EXPONENT);
2654
2655 break;
2656
2657 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2658 if (state & PNG_FP_SAW_ANY)
2659 goto PNG_FP_End; /* not a part of the number */
2660
2661 png_fp_add(state, PNG_FP_SAW_SIGN);
2662
2663 break;
2664
2665 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2666 goto PNG_FP_End; */
2667
2668 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2669 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2670
2671 break;
2672
2673 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2674 goto PNG_FP_End; */
2675
2676 default: goto PNG_FP_End; /* I.e. break 2 */
2677 }
2678
2679 /* The character seems ok, continue. */
2680 ++i;
2681 }
2682
2683 PNG_FP_End:
2684 /* Here at the end, update the state and return the correct
2685 * return code.
2686 */
2687 *statep = state;
2688 *whereami = i;
2689
2690 return (state & PNG_FP_SAW_DIGIT) != 0;
2691 }
2692
2693
2694 /* The same but for a complete string. */
2695 int
2696 png_check_fp_string(png_const_charp string, png_size_t size)
2697 {
2698 int state=0;
2699 png_size_t char_index=0;
2700
2701 if (png_check_fp_number(string, size, &state, &char_index) &&
2702 (char_index == size || string[char_index] == 0))
2703 return state /* must be non-zero - see above */;
2704
2705 return 0; /* i.e. fail */
2706 }
2707 #endif /* pCAL or sCAL */
2708
2709 #ifdef PNG_sCAL_SUPPORTED
2710 # ifdef PNG_FLOATING_POINT_SUPPORTED
2711 /* Utility used below - a simple accurate power of ten from an integral
2712 * exponent.
2713 */
2714 static double
2715 png_pow10(int power)
2716 {
2717 int recip = 0;
2718 double d = 1;
2719
2720 /* Handle negative exponent with a reciprocal at the end because
2721 * 10 is exact whereas .1 is inexact in base 2
2722 */
2723 if (power < 0)
2724 {
2725 if (power < DBL_MIN_10_EXP) return 0;
2726 recip = 1, power = -power;
2727 }
2728
2729 if (power > 0)
2730 {
2731 /* Decompose power bitwise. */
2732 double mult = 10;
2733 do
2734 {
2735 if (power & 1) d *= mult;
2736 mult *= mult;
2737 power >>= 1;
2738 }
2739 while (power > 0);
2740
2741 if (recip) d = 1/d;
2742 }
2743 /* else power is 0 and d is 1 */
2744
2745 return d;
2746 }
2747
2748 /* Function to format a floating point value in ASCII with a given
2749 * precision.
2750 */
2751 void /* PRIVATE */
2752 png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, png_size_t size,
2753 double fp, unsigned int precision)
2754 {
2755 /* We use standard functions from math.h, but not printf because
2756 * that would require stdio. The caller must supply a buffer of
2757 * sufficient size or we will png_error. The tests on size and
2758 * the space in ascii[] consumed are indicated below.
2759 */
2760 if (precision < 1)
2761 precision = DBL_DIG;
2762
2763 /* Enforce the limit of the implementation precision too. */
2764 if (precision > DBL_DIG+1)
2765 precision = DBL_DIG+1;
2766
2767 /* Basic sanity checks */
2768 if (size >= precision+5) /* See the requirements below. */
2769 {
2770 if (fp < 0)
2771 {
2772 fp = -fp;
2773 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
2774 --size;
2775 }
2776
2777 if (fp >= DBL_MIN && fp <= DBL_MAX)
2778 {
2779 int exp_b10; /* A base 10 exponent */
2780 double base; /* 10^exp_b10 */
2781
2782 /* First extract a base 10 exponent of the number,
2783 * the calculation below rounds down when converting
2784 * from base 2 to base 10 (multiply by log10(2) -
2785 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2786 * be increased. Note that the arithmetic shift
2787 * performs a floor() unlike C arithmetic - using a
2788 * C multiply would break the following for negative
2789 * exponents.
2790 */
2791 (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2792
2793 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2794
2795 /* Avoid underflow here. */
2796 base = png_pow10(exp_b10); /* May underflow */
2797
2798 while (base < DBL_MIN || base < fp)
2799 {
2800 /* And this may overflow. */
2801 double test = png_pow10(exp_b10+1);
2802
2803 if (test <= DBL_MAX)
2804 ++exp_b10, base = test;
2805
2806 else
2807 break;
2808 }
2809
2810 /* Normalize fp and correct exp_b10, after this fp is in the
2811 * range [.1,1) and exp_b10 is both the exponent and the digit
2812 * *before* which the decimal point should be inserted
2813 * (starting with 0 for the first digit). Note that this
2814 * works even if 10^exp_b10 is out of range because of the
2815 * test on DBL_MAX above.
2816 */
2817 fp /= base;
2818 while (fp >= 1) fp /= 10, ++exp_b10;
2819
2820 /* Because of the code above fp may, at this point, be
2821 * less than .1, this is ok because the code below can
2822 * handle the leading zeros this generates, so no attempt
2823 * is made to correct that here.
2824 */
2825
2826 {
2827 int czero, clead, cdigits;
2828 char exponent[10];
2829
2830 /* Allow up to two leading zeros - this will not lengthen
2831 * the number compared to using E-n.
2832 */
2833 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
2834 {
2835 czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
2836 exp_b10 = 0; /* Dot added below before first output. */
2837 }
2838 else
2839 czero = 0; /* No zeros to add */
2840
2841 /* Generate the digit list, stripping trailing zeros and
2842 * inserting a '.' before a digit if the exponent is 0.
2843 */
2844 clead = czero; /* Count of leading zeros */
2845 cdigits = 0; /* Count of digits in list. */
2846
2847 do
2848 {
2849 double d;
2850
2851 fp *= 10;
2852 /* Use modf here, not floor and subtract, so that
2853 * the separation is done in one step. At the end
2854 * of the loop don't break the number into parts so
2855 * that the final digit is rounded.
2856 */
2857 if (cdigits+czero-clead+1 < (int)precision)
2858 fp = modf(fp, &d);
2859
2860 else
2861 {
2862 d = floor(fp + .5);
2863
2864 if (d > 9)
2865 {
2866 /* Rounding up to 10, handle that here. */
2867 if (czero > 0)
2868 {
2869 --czero, d = 1;
2870 if (cdigits == 0) --clead;
2871 }
2872 else
2873 {
2874 while (cdigits > 0 && d > 9)
2875 {
2876 int ch = *--ascii;
2877
2878 if (exp_b10 != (-1))
2879 ++exp_b10;
2880
2881 else if (ch == 46)
2882 {
2883 ch = *--ascii, ++size;
2884 /* Advance exp_b10 to '1', so that the
2885 * decimal point happens after the
2886 * previous digit.
2887 */
2888 exp_b10 = 1;
2889 }
2890
2891 --cdigits;
2892 d = ch - 47; /* I.e. 1+(ch-48) */
2893 }
2894
2895 /* Did we reach the beginning? If so adjust the
2896 * exponent but take into account the leading
2897 * decimal point.
2898 */
2899 if (d > 9) /* cdigits == 0 */
2900 {
2901 if (exp_b10 == (-1))
2902 {
2903 /* Leading decimal point (plus zeros?), if
2904 * we lose the decimal point here it must
2905 * be reentered below.
2906 */
2907 int ch = *--ascii;
2908
2909 if (ch == 46)
2910 ++size, exp_b10 = 1;
2911
2912 /* Else lost a leading zero, so 'exp_b10' is
2913 * still ok at (-1)
2914 */
2915 }
2916 else
2917 ++exp_b10;
2918
2919 /* In all cases we output a '1' */
2920 d = 1;
2921 }
2922 }
2923 }
2924 fp = 0; /* Guarantees termination below. */
2925 }
2926
2927 if (d == 0)
2928 {
2929 ++czero;
2930 if (cdigits == 0) ++clead;
2931 }
2932 else
2933 {
2934 /* Included embedded zeros in the digit count. */
2935 cdigits += czero - clead;
2936 clead = 0;
2937
2938 while (czero > 0)
2939 {
2940 /* exp_b10 == (-1) means we just output the decimal
2941 * place - after the DP don't adjust 'exp_b10' any
2942 * more!
2943 */
2944 if (exp_b10 != (-1))
2945 {
2946 if (exp_b10 == 0) *ascii++ = 46, --size;
2947 /* PLUS 1: TOTAL 4 */
2948 --exp_b10;
2949 }
2950 *ascii++ = 48, --czero;
2951 }
2952
2953 if (exp_b10 != (-1))
2954 {
2955 if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
2956 above */
2957 --exp_b10;
2958 }
2959 *ascii++ = (char)(48 + (int)d), ++cdigits;
2960 }
2961 }
2962 while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
2963
2964 /* The total output count (max) is now 4+precision */
2965
2966 /* Check for an exponent, if we don't need one we are
2967 * done and just need to terminate the string. At
2968 * this point exp_b10==(-1) is effectively if flag - it got
2969 * to '-1' because of the decrement after outputing
2970 * the decimal point above (the exponent required is
2971 * *not* -1!)
2972 */
2973 if (exp_b10 >= (-1) && exp_b10 <= 2)
2974 {
2975 /* The following only happens if we didn't output the
2976 * leading zeros above for negative exponent, so this
2977 * doest add to the digit requirement. Note that the
2978 * two zeros here can only be output if the two leading
2979 * zeros were *not* output, so this doesn't increase
2980 * the output count.
2981 */
2982 while (--exp_b10 >= 0) *ascii++ = 48;
2983
2984 *ascii = 0;
2985
2986 /* Total buffer requirement (including the '\0') is
2987 * 5+precision - see check at the start.
2988 */
2989 return;
2990 }
2991
2992 /* Here if an exponent is required, adjust size for
2993 * the digits we output but did not count. The total
2994 * digit output here so far is at most 1+precision - no
2995 * decimal point and no leading or trailing zeros have
2996 * been output.
2997 */
2998 size -= cdigits;
2999
3000 *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */
3001
3002 /* The following use of an unsigned temporary avoids ambiguities in
3003 * the signed arithmetic on exp_b10 and permits GCC at least to do
3004 * better optimization.
3005 */
3006 {
3007 unsigned int uexp_b10;
3008
3009 if (exp_b10 < 0)
3010 {
3011 *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
3012 uexp_b10 = -exp_b10;
3013 }
3014
3015 else
3016 uexp_b10 = exp_b10;
3017
3018 cdigits = 0;
3019
3020 while (uexp_b10 > 0)
3021 {
3022 exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
3023 uexp_b10 /= 10;
3024 }
3025 }
3026
3027 /* Need another size check here for the exponent digits, so
3028 * this need not be considered above.
3029 */
3030 if ((int)size > cdigits)
3031 {
3032 while (cdigits > 0) *ascii++ = exponent[--cdigits];
3033
3034 *ascii = 0;
3035
3036 return;
3037 }
3038 }
3039 }
3040 else if (!(fp >= DBL_MIN))
3041 {
3042 *ascii++ = 48; /* '0' */
3043 *ascii = 0;
3044 return;
3045 }
3046 else
3047 {
3048 *ascii++ = 105; /* 'i' */
3049 *ascii++ = 110; /* 'n' */
3050 *ascii++ = 102; /* 'f' */
3051 *ascii = 0;
3052 return;
3053 }
3054 }
3055
3056 /* Here on buffer too small. */
3057 png_error(png_ptr, "ASCII conversion buffer too small");
3058 }
3059
3060 # endif /* FLOATING_POINT */
3061
3062 # ifdef PNG_FIXED_POINT_SUPPORTED
3063 /* Function to format a fixed point value in ASCII.
3064 */
3065 void /* PRIVATE */
3066 png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
3067 png_size_t size, png_fixed_point fp)
3068 {
3069 /* Require space for 10 decimal digits, a decimal point, a minus sign and a
3070 * trailing \0, 13 characters:
3071 */
3072 if (size > 12)
3073 {
3074 png_uint_32 num;
3075
3076 /* Avoid overflow here on the minimum integer. */
3077 if (fp < 0)
3078 *ascii++ = 45, --size, num = -fp;
3079 else
3080 num = fp;
3081
3082 if (num <= 0x80000000) /* else overflowed */
3083 {
3084 unsigned int ndigits = 0, first = 16 /* flag value */;
3085 char digits[10];
3086
3087 while (num)
3088 {
3089 /* Split the low digit off num: */
3090 unsigned int tmp = num/10;
3091 num -= tmp*10;
3092 digits[ndigits++] = (char)(48 + num);
3093 /* Record the first non-zero digit, note that this is a number
3094 * starting at 1, it's not actually the array index.
3095 */
3096 if (first == 16 && num > 0)
3097 first = ndigits;
3098 num = tmp;
3099 }
3100
3101 if (ndigits > 0)
3102 {
3103 while (ndigits > 5) *ascii++ = digits[--ndigits];
3104 /* The remaining digits are fractional digits, ndigits is '5' or
3105 * smaller at this point. It is certainly not zero. Check for a
3106 * non-zero fractional digit:
3107 */
3108 if (first <= 5)
3109 {
3110 unsigned int i;
3111 *ascii++ = 46; /* decimal point */
3112 /* ndigits may be <5 for small numbers, output leading zeros
3113 * then ndigits digits to first:
3114 */
3115 i = 5;
3116 while (ndigits < i) *ascii++ = 48, --i;
3117 while (ndigits >= first) *ascii++ = digits[--ndigits];
3118 /* Don't output the trailing zeros! */
3119 }
3120 }
3121 else
3122 *ascii++ = 48;
3123
3124 /* And null terminate the string: */
3125 *ascii = 0;
3126 return;
3127 }
3128 }
3129
3130 /* Here on buffer too small. */
3131 png_error(png_ptr, "ASCII conversion buffer too small");
3132 }
3133 # endif /* FIXED_POINT */
3134 #endif /* READ_SCAL */
3135
3136 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \
3137 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
3138 (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
3139 defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3140 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
3141 (defined(PNG_sCAL_SUPPORTED) && \
3142 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
3143 png_fixed_point
3144 png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
3145 {
3146 double r = floor(100000 * fp + .5);
3147
3148 if (r > 2147483647. || r < -2147483648.)
3149 png_fixed_error(png_ptr, text);
3150
3151 # ifndef PNG_ERROR_TEXT_SUPPORTED
3152 PNG_UNUSED(text)
3153 # endif
3154
3155 return (png_fixed_point)r;
3156 }
3157 #endif
3158
3159 #if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
3160 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
3161 /* muldiv functions */
3162 /* This API takes signed arguments and rounds the result to the nearest
3163 * integer (or, for a fixed point number - the standard argument - to
3164 * the nearest .00001). Overflow and divide by zero are signalled in
3165 * the result, a boolean - true on success, false on overflow.
3166 */
3167 int
3168 png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
3169 png_int_32 divisor)
3170 {
3171 /* Return a * times / divisor, rounded. */
3172 if (divisor != 0)
3173 {
3174 if (a == 0 || times == 0)
3175 {
3176 *res = 0;
3177 return 1;
3178 }
3179 else
3180 {
3181 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3182 double r = a;
3183 r *= times;
3184 r /= divisor;
3185 r = floor(r+.5);
3186
3187 /* A png_fixed_point is a 32-bit integer. */
3188 if (r <= 2147483647. && r >= -2147483648.)
3189 {
3190 *res = (png_fixed_point)r;
3191 return 1;
3192 }
3193 #else
3194 int negative = 0;
3195 png_uint_32 A, T, D;
3196 png_uint_32 s16, s32, s00;
3197
3198 if (a < 0)
3199 negative = 1, A = -a;
3200 else
3201 A = a;
3202
3203 if (times < 0)
3204 negative = !negative, T = -times;
3205 else
3206 T = times;
3207
3208 if (divisor < 0)
3209 negative = !negative, D = -divisor;
3210 else
3211 D = divisor;
3212
3213 /* Following can't overflow because the arguments only
3214 * have 31 bits each, however the result may be 32 bits.
3215 */
3216 s16 = (A >> 16) * (T & 0xffff) +
3217 (A & 0xffff) * (T >> 16);
3218 /* Can't overflow because the a*times bit is only 30
3219 * bits at most.
3220 */
3221 s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
3222 s00 = (A & 0xffff) * (T & 0xffff);
3223
3224 s16 = (s16 & 0xffff) << 16;
3225 s00 += s16;
3226
3227 if (s00 < s16)
3228 ++s32; /* carry */
3229
3230 if (s32 < D) /* else overflow */
3231 {
3232 /* s32.s00 is now the 64-bit product, do a standard
3233 * division, we know that s32 < D, so the maximum
3234 * required shift is 31.
3235 */
3236 int bitshift = 32;
3237 png_fixed_point result = 0; /* NOTE: signed */
3238
3239 while (--bitshift >= 0)
3240 {
3241 png_uint_32 d32, d00;
3242
3243 if (bitshift > 0)
3244 d32 = D >> (32-bitshift), d00 = D << bitshift;
3245
3246 else
3247 d32 = 0, d00 = D;
3248
3249 if (s32 > d32)
3250 {
3251 if (s00 < d00) --s32; /* carry */
3252 s32 -= d32, s00 -= d00, result += 1<<bitshift;
3253 }
3254
3255 else
3256 if (s32 == d32 && s00 >= d00)
3257 s32 = 0, s00 -= d00, result += 1<<bitshift;
3258 }
3259
3260 /* Handle the rounding. */
3261 if (s00 >= (D >> 1))
3262 ++result;
3263
3264 if (negative)
3265 result = -result;
3266
3267 /* Check for overflow. */
3268 if ((negative && result <= 0) || (!negative && result >= 0))
3269 {
3270 *res = result;
3271 return 1;
3272 }
3273 }
3274 #endif
3275 }
3276 }
3277
3278 return 0;
3279 }
3280 #endif /* READ_GAMMA || INCH_CONVERSIONS */
3281
3282 #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
3283 /* The following is for when the caller doesn't much care about the
3284 * result.
3285 */
3286 png_fixed_point
3287 png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times,
3288 png_int_32 divisor)
3289 {
3290 png_fixed_point result;
3291
3292 if (png_muldiv(&result, a, times, divisor))
3293 return result;
3294
3295 png_warning(png_ptr, "fixed point overflow ignored");
3296 return 0;
3297 }
3298 #endif
3299
3300 #ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */
3301 /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
3302 png_fixed_point
3303 png_reciprocal(png_fixed_point a)
3304 {
3305 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3306 double r = floor(1E10/a+.5);
3307
3308 if (r <= 2147483647. && r >= -2147483648.)
3309 return (png_fixed_point)r;
3310 #else
3311 png_fixed_point res;
3312
3313 if (png_muldiv(&res, 100000, 100000, a))
3314 return res;
3315 #endif
3316
3317 return 0; /* error/overflow */
3318 }
3319
3320 /* This is the shared test on whether a gamma value is 'significant' - whether
3321 * it is worth doing gamma correction.
3322 */
3323 int /* PRIVATE */
3324 png_gamma_significant(png_fixed_point gamma_val)
3325 {
3326 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
3327 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
3328 }
3329 #endif
3330
3331 #ifdef PNG_READ_GAMMA_SUPPORTED
3332 # ifdef PNG_16BIT_SUPPORTED
3333 /* A local convenience routine. */
3334 static png_fixed_point
3335 png_product2(png_fixed_point a, png_fixed_point b)
3336 {
3337 /* The required result is 1/a * 1/b; the following preserves accuracy. */
3338 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3339 double r = a * 1E-5;
3340 r *= b;
3341 r = floor(r+.5);
3342
3343 if (r <= 2147483647. && r >= -2147483648.)
3344 return (png_fixed_point)r;
3345 # else
3346 png_fixed_point res;
3347
3348 if (png_muldiv(&res, a, b, 100000))
3349 return res;
3350 # endif
3351
3352 return 0; /* overflow */
3353 }
3354 # endif /* 16BIT */
3355
3356 /* The inverse of the above. */
3357 png_fixed_point
3358 png_reciprocal2(png_fixed_point a, png_fixed_point b)
3359 {
3360 /* The required result is 1/a * 1/b; the following preserves accuracy. */
3361 #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3362 double r = 1E15/a;
3363 r /= b;
3364 r = floor(r+.5);
3365
3366 if (r <= 2147483647. && r >= -2147483648.)
3367 return (png_fixed_point)r;
3368 #else
3369 /* This may overflow because the range of png_fixed_point isn't symmetric,
3370 * but this API is only used for the product of file and screen gamma so it
3371 * doesn't matter that the smallest number it can produce is 1/21474, not
3372 * 1/100000
3373 */
3374 png_fixed_point res = png_product2(a, b);
3375
3376 if (res != 0)
3377 return png_reciprocal(res);
3378 #endif
3379
3380 return 0; /* overflow */
3381 }
3382 #endif /* READ_GAMMA */
3383
3384 #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
3385 #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
3386 /* Fixed point gamma.
3387 *
3388 * The code to calculate the tables used below can be found in the shell script
3389 * contrib/tools/intgamma.sh
3390 *
3391 * To calculate gamma this code implements fast log() and exp() calls using only
3392 * fixed point arithmetic. This code has sufficient precision for either 8-bit
3393 * or 16-bit sample values.
3394 *
3395 * The tables used here were calculated using simple 'bc' programs, but C double
3396 * precision floating point arithmetic would work fine.
3397 *
3398 * 8-bit log table
3399 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
3400 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
3401 * mantissa. The numbers are 32-bit fractions.
3402 */
3403 static const png_uint_32
3404 png_8bit_l2[128] =
3405 {
3406 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3407 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3408 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3409 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3410 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3411 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3412 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3413 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3414 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3415 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3416 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3417 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3418 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3419 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3420 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3421 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3422 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3423 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3424 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3425 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3426 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3427 24347096U, 0U
3428
3429 #if 0
3430 /* The following are the values for 16-bit tables - these work fine for the
3431 * 8-bit conversions but produce very slightly larger errors in the 16-bit
3432 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To
3433 * use these all the shifts below must be adjusted appropriately.
3434 */
3435 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3436 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3437 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3438 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3439 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3440 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3441 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3442 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3443 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3444 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3445 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3446 1119, 744, 372
3447 #endif
3448 };
3449
3450 static png_int_32
3451 png_log8bit(unsigned int x)
3452 {
3453 unsigned int lg2 = 0;
3454 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3455 * because the log is actually negate that means adding 1. The final
3456 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3457 * input), return -1 for the overflow (log 0) case, - so the result is
3458 * always at most 19 bits.
3459 */
3460 if ((x &= 0xff) == 0)
3461 return -1;
3462
3463 if ((x & 0xf0) == 0)
3464 lg2 = 4, x <<= 4;
3465
3466 if ((x & 0xc0) == 0)
3467 lg2 += 2, x <<= 2;
3468
3469 if ((x & 0x80) == 0)
3470 lg2 += 1, x <<= 1;
3471
3472 /* result is at most 19 bits, so this cast is safe: */
3473 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3474 }
3475
3476 /* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3477 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3478 * get an approximation then multiply the approximation by a correction factor
3479 * determined by the remaining up to 8 bits. This requires an additional step
3480 * in the 16-bit case.
3481 *
3482 * We want log2(value/65535), we have log2(v'/255), where:
3483 *
3484 * value = v' * 256 + v''
3485 * = v' * f
3486 *
3487 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3488 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3489 * than 258. The final factor also needs to correct for the fact that our 8-bit
3490 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3491 *
3492 * This gives a final formula using a calculated value 'x' which is value/v' and
3493 * scaling by 65536 to match the above table:
3494 *
3495 * log2(x/257) * 65536
3496 *
3497 * Since these numbers are so close to '1' we can use simple linear
3498 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3499 * (result 367.179). The values used below are scaled by a further 64 to give
3500 * 16-bit precision in the interpolation:
3501 *
3502 * Start (256): -23591
3503 * Zero (257): 0
3504 * End (258): 23499
3505 */
3506 static png_int_32
3507 png_log16bit(png_uint_32 x)
3508 {
3509 unsigned int lg2 = 0;
3510
3511 /* As above, but now the input has 16 bits. */
3512 if ((x &= 0xffff) == 0)
3513 return -1;
3514
3515 if ((x & 0xff00) == 0)
3516 lg2 = 8, x <<= 8;
3517
3518 if ((x & 0xf000) == 0)
3519 lg2 += 4, x <<= 4;
3520
3521 if ((x & 0xc000) == 0)
3522 lg2 += 2, x <<= 2;
3523
3524 if ((x & 0x8000) == 0)
3525 lg2 += 1, x <<= 1;
3526
3527 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3528 * value.
3529 */
3530 lg2 <<= 28;
3531 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3532
3533 /* Now we need to interpolate the factor, this requires a division by the top
3534 * 8 bits. Do this with maximum precision.
3535 */
3536 x = ((x << 16) + (x >> 9)) / (x >> 8);
3537
3538 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3539 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3540 * 16 bits to interpolate to get the low bits of the result. Round the
3541 * answer. Note that the end point values are scaled by 64 to retain overall
3542 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3543 * the overall scaling by 6-12. Round at every step.
3544 */
3545 x -= 1U << 24;
3546
3547 if (x <= 65536U) /* <= '257' */
3548 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3549
3550 else
3551 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3552
3553 /* Safe, because the result can't have more than 20 bits: */
3554 return (png_int_32)((lg2 + 2048) >> 12);
3555 }
3556
3557 /* The 'exp()' case must invert the above, taking a 20-bit fixed point
3558 * logarithmic value and returning a 16 or 8-bit number as appropriate. In
3559 * each case only the low 16 bits are relevant - the fraction - since the
3560 * integer bits (the top 4) simply determine a shift.
3561 *
3562 * The worst case is the 16-bit distinction between 65535 and 65534, this
3563 * requires perhaps spurious accuracty in the decoding of the logarithm to
3564 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
3565 * of getting this accuracy in practice.
3566 *
3567 * To deal with this the following exp() function works out the exponent of the
3568 * frational part of the logarithm by using an accurate 32-bit value from the
3569 * top four fractional bits then multiplying in the remaining bits.
3570 */
3571 static const png_uint_32
3572 png_32bit_exp[16] =
3573 {
3574 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3575 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3576 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3577 2553802834U, 2445529972U, 2341847524U, 2242560872U
3578 };
3579
3580 /* Adjustment table; provided to explain the numbers in the code below. */
3581 #if 0
3582 for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3583 11 44937.64284865548751208448
3584 10 45180.98734845585101160448
3585 9 45303.31936980687359311872
3586 8 45364.65110595323018870784
3587 7 45395.35850361789624614912
3588 6 45410.72259715102037508096
3589 5 45418.40724413220722311168
3590 4 45422.25021786898173001728
3591 3 45424.17186732298419044352
3592 2 45425.13273269940811464704
3593 1 45425.61317555035558641664
3594 0 45425.85339951654943850496
3595 #endif
3596
3597 static png_uint_32
3598 png_exp(png_fixed_point x)
3599 {
3600 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3601 {
3602 /* Obtain a 4-bit approximation */
3603 png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
3604
3605 /* Incorporate the low 12 bits - these decrease the returned value by
3606 * multiplying by a number less than 1 if the bit is set. The multiplier
3607 * is determined by the above table and the shift. Notice that the values
3608 * converge on 45426 and this is used to allow linear interpolation of the
3609 * low bits.
3610 */
3611 if (x & 0x800)
3612 e -= (((e >> 16) * 44938U) + 16U) >> 5;
3613
3614 if (x & 0x400)
3615 e -= (((e >> 16) * 45181U) + 32U) >> 6;
3616
3617 if (x & 0x200)
3618 e -= (((e >> 16) * 45303U) + 64U) >> 7;
3619
3620 if (x & 0x100)
3621 e -= (((e >> 16) * 45365U) + 128U) >> 8;
3622
3623 if (x & 0x080)
3624 e -= (((e >> 16) * 45395U) + 256U) >> 9;
3625
3626 if (x & 0x040)
3627 e -= (((e >> 16) * 45410U) + 512U) >> 10;
3628
3629 /* And handle the low 6 bits in a single block. */
3630 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3631
3632 /* Handle the upper bits of x. */
3633 e >>= x >> 16;
3634 return e;
3635 }
3636
3637 /* Check for overflow */
3638 if (x <= 0)
3639 return png_32bit_exp[0];
3640
3641 /* Else underflow */
3642 return 0;
3643 }
3644
3645 static png_byte
3646 png_exp8bit(png_fixed_point lg2)
3647 {
3648 /* Get a 32-bit value: */
3649 png_uint_32 x = png_exp(lg2);
3650
3651 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
3652 * second, rounding, step can't overflow because of the first, subtraction,
3653 * step.
3654 */
3655 x -= x >> 8;
3656 return (png_byte)((x + 0x7fffffU) >> 24);
3657 }
3658
3659 #ifdef PNG_16BIT_SUPPORTED
3660 static png_uint_16
3661 png_exp16bit(png_fixed_point lg2)
3662 {
3663 /* Get a 32-bit value: */
3664 png_uint_32 x = png_exp(lg2);
3665
3666 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3667 x -= x >> 16;
3668 return (png_uint_16)((x + 32767U) >> 16);
3669 }
3670 #endif /* 16BIT */
3671 #endif /* FLOATING_ARITHMETIC */
3672
3673 png_byte
3674 png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3675 {
3676 if (value > 0 && value < 255)
3677 {
3678 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3679 double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
3680 return (png_byte)r;
3681 # else
3682 png_int_32 lg2 = png_log8bit(value);
3683 png_fixed_point res;
3684
3685 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
3686 return png_exp8bit(res);
3687
3688 /* Overflow. */
3689 value = 0;
3690 # endif
3691 }
3692
3693 return (png_byte)value;
3694 }
3695
3696 #ifdef PNG_16BIT_SUPPORTED
3697 png_uint_16
3698 png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3699 {
3700 if (value > 0 && value < 65535)
3701 {
3702 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3703 double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
3704 return (png_uint_16)r;
3705 # else
3706 png_int_32 lg2 = png_log16bit(value);
3707 png_fixed_point res;
3708
3709 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
3710 return png_exp16bit(res);
3711
3712 /* Overflow. */
3713 value = 0;
3714 # endif
3715 }
3716
3717 return (png_uint_16)value;
3718 }
3719 #endif /* 16BIT */
3720
3721 /* This does the right thing based on the bit_depth field of the
3722 * png_struct, interpreting values as 8-bit or 16-bit. While the result
3723 * is nominally a 16-bit value if bit depth is 8 then the result is
3724 * 8-bit (as are the arguments.)
3725 */
3726 png_uint_16 /* PRIVATE */
3727 png_gamma_correct(png_structrp png_ptr, unsigned int value,
3728 png_fixed_point gamma_val)
3729 {
3730 if (png_ptr->bit_depth == 8)
3731 return png_gamma_8bit_correct(value, gamma_val);
3732
3733 #ifdef PNG_16BIT_SUPPORTED
3734 else
3735 return png_gamma_16bit_correct(value, gamma_val);
3736 #else
3737 /* should not reach this */
3738 return 0;
3739 #endif /* 16BIT */
3740 }
3741
3742 #ifdef PNG_16BIT_SUPPORTED
3743 /* Internal function to build a single 16-bit table - the table consists of
3744 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3745 * to shift the input values right (or 16-number_of_signifiant_bits).
3746 *
3747 * The caller is responsible for ensuring that the table gets cleaned up on
3748 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3749 * should be somewhere that will be cleaned.
3750 */
3751 static void
3752 png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3753 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3754 {
3755 /* Various values derived from 'shift': */
3756 PNG_CONST unsigned int num = 1U << (8U - shift);
3757 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3758 PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
3759 unsigned int i;
3760
3761 png_uint_16pp table = *ptable =
3762 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3763
3764 for (i = 0; i < num; i++)
3765 {
3766 png_uint_16p sub_table = table[i] =
3767 (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
3768
3769 /* The 'threshold' test is repeated here because it can arise for one of
3770 * the 16-bit tables even if the others don't hit it.
3771 */
3772 if (png_gamma_significant(gamma_val))
3773 {
3774 /* The old code would overflow at the end and this would cause the
3775 * 'pow' function to return a result >1, resulting in an
3776 * arithmetic error. This code follows the spec exactly; ig is
3777 * the recovered input sample, it always has 8-16 bits.
3778 *
3779 * We want input * 65535/max, rounded, the arithmetic fits in 32
3780 * bits (unsigned) so long as max <= 32767.
3781 */
3782 unsigned int j;
3783 for (j = 0; j < 256; j++)
3784 {
3785 png_uint_32 ig = (j << (8-shift)) + i;
3786 # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3787 /* Inline the 'max' scaling operation: */
3788 double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
3789 sub_table[j] = (png_uint_16)d;
3790 # else
3791 if (shift)
3792 ig = (ig * 65535U + max_by_2)/max;
3793
3794 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
3795 # endif
3796 }
3797 }
3798 else
3799 {
3800 /* We must still build a table, but do it the fast way. */
3801 unsigned int j;
3802
3803 for (j = 0; j < 256; j++)
3804 {
3805 png_uint_32 ig = (j << (8-shift)) + i;
3806
3807 if (shift)
3808 ig = (ig * 65535U + max_by_2)/max;
3809
3810 sub_table[j] = (png_uint_16)ig;
3811 }
3812 }
3813 }
3814 }
3815
3816 /* NOTE: this function expects the *inverse* of the overall gamma transformation
3817 * required.
3818 */
3819 static void
3820 png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
3821 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3822 {
3823 PNG_CONST unsigned int num = 1U << (8U - shift);
3824 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3825 unsigned int i;
3826 png_uint_32 last;
3827
3828 png_uint_16pp table = *ptable =
3829 (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3830
3831 /* 'num' is the number of tables and also the number of low bits of low
3832 * bits of the input 16-bit value used to select a table. Each table is
3833 * itself index by the high 8 bits of the value.
3834 */
3835 for (i = 0; i < num; i++)
3836 table[i] = (png_uint_16p)png_malloc(png_ptr,
3837 256 * (sizeof (png_uint_16)));
3838
3839 /* 'gamma_val' is set to the reciprocal of the value calculated above, so
3840 * pow(out,g) is an *input* value. 'last' is the last input value set.
3841 *
3842 * In the loop 'i' is used to find output values. Since the output is
3843 * 8-bit there are only 256 possible values. The tables are set up to
3844 * select the closest possible output value for each input by finding
3845 * the input value at the boundary between each pair of output values
3846 * and filling the table up to that boundary with the lower output
3847 * value.
3848 *
3849 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
3850 * values the code below uses a 16-bit value in i; the values start at
3851 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
3852 * entries are filled with 255). Start i at 128 and fill all 'last'
3853 * table entries <= 'max'
3854 */
3855 last = 0;
3856 for (i = 0; i < 255; ++i) /* 8-bit output value */
3857 {
3858 /* Find the corresponding maximum input value */
3859 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
3860
3861 /* Find the boundary value in 16 bits: */
3862 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
3863
3864 /* Adjust (round) to (16-shift) bits: */
3865 bound = (bound * max + 32768U)/65535U + 1U;
3866
3867 while (last < bound)
3868 {
3869 table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
3870 last++;
3871 }
3872 }
3873
3874 /* And fill in the final entries. */
3875 while (last < (num << 8))
3876 {
3877 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
3878 last++;
3879 }
3880 }
3881 #endif /* 16BIT */
3882
3883 /* Build a single 8-bit table: same as the 16-bit case but much simpler (and
3884 * typically much faster). Note that libpng currently does no sBIT processing
3885 * (apparently contrary to the spec) so a 256 entry table is always generated.
3886 */
3887 static void
3888 png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
3889 PNG_CONST png_fixed_point gamma_val)
3890 {
3891 unsigned int i;
3892 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
3893
3894 if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
3895 table[i] = png_gamma_8bit_correct(i, gamma_val);
3896
3897 else for (i=0; i<256; ++i)
3898 table[i] = (png_byte)i;
3899 }
3900
3901 /* Used from png_read_destroy and below to release the memory used by the gamma
3902 * tables.
3903 */
3904 void /* PRIVATE */
3905 png_destroy_gamma_table(png_structrp png_ptr)
3906 {
3907 png_free(png_ptr, png_ptr->gamma_table);
3908 png_ptr->gamma_table = NULL;
3909
3910 #ifdef PNG_16BIT_SUPPORTED
3911 if (png_ptr->gamma_16_table != NULL)
3912 {
3913 int i;
3914 int istop = (1 << (8 - png_ptr->gamma_shift));
3915 for (i = 0; i < istop; i++)
3916 {
3917 png_free(png_ptr, png_ptr->gamma_16_table[i]);
3918 }
3919 png_free(png_ptr, png_ptr->gamma_16_table);
3920 png_ptr->gamma_16_table = NULL;
3921 }
3922 #endif /* 16BIT */
3923
3924 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3925 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3926 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3927 png_free(png_ptr, png_ptr->gamma_from_1);
3928 png_ptr->gamma_from_1 = NULL;
3929 png_free(png_ptr, png_ptr->gamma_to_1);
3930 png_ptr->gamma_to_1 = NULL;
3931
3932 #ifdef PNG_16BIT_SUPPORTED
3933 if (png_ptr->gamma_16_from_1 != NULL)
3934 {
3935 int i;
3936 int istop = (1 << (8 - png_ptr->gamma_shift));
3937 for (i = 0; i < istop; i++)
3938 {
3939 png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
3940 }
3941 png_free(png_ptr, png_ptr->gamma_16_from_1);
3942 png_ptr->gamma_16_from_1 = NULL;
3943 }
3944 if (png_ptr->gamma_16_to_1 != NULL)
3945 {
3946 int i;
3947 int istop = (1 << (8 - png_ptr->gamma_shift));
3948 for (i = 0; i < istop; i++)
3949 {
3950 png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
3951 }
3952 png_free(png_ptr, png_ptr->gamma_16_to_1);
3953 png_ptr->gamma_16_to_1 = NULL;
3954 }
3955 #endif /* 16BIT */
3956 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
3957 }
3958
3959 /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
3960 * tables, we don't make a full table if we are reducing to 8-bit in
3961 * the future. Note also how the gamma_16 tables are segmented so that
3962 * we don't need to allocate > 64K chunks for a full 16-bit table.
3963 */
3964 void /* PRIVATE */
3965 png_build_gamma_table(png_structrp png_ptr, int bit_depth)
3966 {
3967 png_debug(1, "in png_build_gamma_table");
3968
3969 /* Remove any existing table; this copes with multiple calls to
3970 * png_read_update_info. The warning is because building the gamma tables
3971 * multiple times is a performance hit - it's harmless but the ability to call
3972 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
3973 * to warn if the app introduces such a hit.
3974 */
3975 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
3976 {
3977 png_warning(png_ptr, "gamma table being rebuilt");
3978 png_destroy_gamma_table(png_ptr);
3979 }
3980
3981 if (bit_depth <= 8)
3982 {
3983 png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
3984 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
3985 png_ptr->screen_gamma) : PNG_FP_1);
3986
3987 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3988 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
3989 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
3990 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
3991 {
3992 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
3993 png_reciprocal(png_ptr->colorspace.gamma));
3994
3995 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
3996 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
3997 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
3998 }
3999 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4000 }
4001 #ifdef PNG_16BIT_SUPPORTED
4002 else
4003 {
4004 png_byte shift, sig_bit;
4005
4006 if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
4007 {
4008 sig_bit = png_ptr->sig_bit.red;
4009
4010 if (png_ptr->sig_bit.green > sig_bit)
4011 sig_bit = png_ptr->sig_bit.green;
4012
4013 if (png_ptr->sig_bit.blue > sig_bit)
4014 sig_bit = png_ptr->sig_bit.blue;
4015 }
4016 else
4017 sig_bit = png_ptr->sig_bit.gray;
4018
4019 /* 16-bit gamma code uses this equation:
4020 *
4021 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
4022 *
4023 * Where 'iv' is the input color value and 'ov' is the output value -
4024 * pow(iv, gamma).
4025 *
4026 * Thus the gamma table consists of up to 256 256 entry tables. The table
4027 * is selected by the (8-gamma_shift) most significant of the low 8 bits of
4028 * the color value then indexed by the upper 8 bits:
4029 *
4030 * table[low bits][high 8 bits]
4031 *
4032 * So the table 'n' corresponds to all those 'iv' of:
4033 *
4034 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
4035 *
4036 */
4037 if (sig_bit > 0 && sig_bit < 16U)
4038 shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
4039
4040 else
4041 shift = 0; /* keep all 16 bits */
4042
4043 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
4044 {
4045 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
4046 * the significant bits in the *input* when the output will
4047 * eventually be 8 bits. By default it is 11.
4048 */
4049 if (shift < (16U - PNG_MAX_GAMMA_8))
4050 shift = (16U - PNG_MAX_GAMMA_8);
4051 }
4052
4053 if (shift > 8U)
4054 shift = 8U; /* Guarantees at least one table! */
4055
4056 png_ptr->gamma_shift = shift;
4057
4058 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
4059 * PNG_COMPOSE). This effectively smashed the background calculation for
4060 * 16-bit output because the 8-bit table assumes the result will be reduced
4061 * to 8 bits.
4062 */
4063 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
4064 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
4065 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
4066 png_ptr->screen_gamma) : PNG_FP_1);
4067
4068 else
4069 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
4070 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
4071 png_ptr->screen_gamma) : PNG_FP_1);
4072
4073 #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4074 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4075 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4076 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
4077 {
4078 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
4079 png_reciprocal(png_ptr->colorspace.gamma));
4080
4081 /* Notice that the '16 from 1' table should be full precision, however
4082 * the lookup on this table still uses gamma_shift, so it can't be.
4083 * TODO: fix this.
4084 */
4085 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
4086 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
4087 png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4088 }
4089 #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4090 }
4091 #endif /* 16BIT */
4092 }
4093 #endif /* READ_GAMMA */
4094
4095 /* HARDWARE OPTION SUPPORT */
4096 #ifdef PNG_SET_OPTION_SUPPORTED
4097 int PNGAPI
4098 png_set_option(png_structrp png_ptr, int option, int onoff)
4099 {
4100 if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
4101 (option & 1) == 0)
4102 {
4103 int mask = 3 << option;
4104 int setting = (2 + (onoff != 0)) << option;
4105 int current = png_ptr->options;
4106
4107 png_ptr->options = (png_byte)((current & ~mask) | setting);
4108
4109 return (current & mask) >> option;
4110 }
4111
4112 return PNG_OPTION_INVALID;
4113 }
4114 #endif
4115
4116 /* sRGB support */
4117 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4118 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4119 /* sRGB conversion tables; these are machine generated with the code in
4120 * contrib/tools/makesRGB.c. The actual sRGB transfer curve defined in the
4121 * specification (see the article at http://en.wikipedia.org/wiki/SRGB)
4122 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
4123 * The sRGB to linear table is exact (to the nearest 16 bit linear fraction).
4124 * The inverse (linear to sRGB) table has accuracies as follows:
4125 *
4126 * For all possible (255*65535+1) input values:
4127 *
4128 * error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
4129 *
4130 * For the input values corresponding to the 65536 16-bit values:
4131 *
4132 * error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
4133 *
4134 * In all cases the inexact readings are off by one.
4135 */
4136
4137 #ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4138 /* The convert-to-sRGB table is only currently required for read. */
4139 const png_uint_16 png_sRGB_table[256] =
4140 {
4141 0,20,40,60,80,99,119,139,
4142 159,179,199,219,241,264,288,313,
4143 340,367,396,427,458,491,526,562,
4144 599,637,677,718,761,805,851,898,
4145 947,997,1048,1101,1156,1212,1270,1330,
4146 1391,1453,1517,1583,1651,1720,1790,1863,
4147 1937,2013,2090,2170,2250,2333,2418,2504,
4148 2592,2681,2773,2866,2961,3058,3157,3258,
4149 3360,3464,3570,3678,3788,3900,4014,4129,
4150 4247,4366,4488,4611,4736,4864,4993,5124,
4151 5257,5392,5530,5669,5810,5953,6099,6246,
4152 6395,6547,6700,6856,7014,7174,7335,7500,
4153 7666,7834,8004,8177,8352,8528,8708,8889,
4154 9072,9258,9445,9635,9828,10022,10219,10417,
4155 10619,10822,11028,11235,11446,11658,11873,12090,
4156 12309,12530,12754,12980,13209,13440,13673,13909,
4157 14146,14387,14629,14874,15122,15371,15623,15878,
4158 16135,16394,16656,16920,17187,17456,17727,18001,
4159 18277,18556,18837,19121,19407,19696,19987,20281,
4160 20577,20876,21177,21481,21787,22096,22407,22721,
4161 23038,23357,23678,24002,24329,24658,24990,25325,
4162 25662,26001,26344,26688,27036,27386,27739,28094,
4163 28452,28813,29176,29542,29911,30282,30656,31033,
4164 31412,31794,32179,32567,32957,33350,33745,34143,
4165 34544,34948,35355,35764,36176,36591,37008,37429,
4166 37852,38278,38706,39138,39572,40009,40449,40891,
4167 41337,41785,42236,42690,43147,43606,44069,44534,
4168 45002,45473,45947,46423,46903,47385,47871,48359,
4169 48850,49344,49841,50341,50844,51349,51858,52369,
4170 52884,53401,53921,54445,54971,55500,56032,56567,
4171 57105,57646,58190,58737,59287,59840,60396,60955,
4172 61517,62082,62650,63221,63795,64372,64952,65535
4173 };
4174
4175 #endif /* simplified read only */
4176
4177 /* The base/delta tables are required for both read and write (but currently
4178 * only the simplified versions.)
4179 */
4180 const png_uint_16 png_sRGB_base[512] =
4181 {
4182 128,1782,3383,4644,5675,6564,7357,8074,
4183 8732,9346,9921,10463,10977,11466,11935,12384,
4184 12816,13233,13634,14024,14402,14769,15125,15473,
4185 15812,16142,16466,16781,17090,17393,17690,17981,
4186 18266,18546,18822,19093,19359,19621,19879,20133,
4187 20383,20630,20873,21113,21349,21583,21813,22041,
4188 22265,22487,22707,22923,23138,23350,23559,23767,
4189 23972,24175,24376,24575,24772,24967,25160,25352,
4190 25542,25730,25916,26101,26284,26465,26645,26823,
4191 27000,27176,27350,27523,27695,27865,28034,28201,
4192 28368,28533,28697,28860,29021,29182,29341,29500,
4193 29657,29813,29969,30123,30276,30429,30580,30730,
4194 30880,31028,31176,31323,31469,31614,31758,31902,
4195 32045,32186,32327,32468,32607,32746,32884,33021,
4196 33158,33294,33429,33564,33697,33831,33963,34095,
4197 34226,34357,34486,34616,34744,34873,35000,35127,
4198 35253,35379,35504,35629,35753,35876,35999,36122,
4199 36244,36365,36486,36606,36726,36845,36964,37083,
4200 37201,37318,37435,37551,37668,37783,37898,38013,
4201 38127,38241,38354,38467,38580,38692,38803,38915,
4202 39026,39136,39246,39356,39465,39574,39682,39790,
4203 39898,40005,40112,40219,40325,40431,40537,40642,
4204 40747,40851,40955,41059,41163,41266,41369,41471,
4205 41573,41675,41777,41878,41979,42079,42179,42279,
4206 42379,42478,42577,42676,42775,42873,42971,43068,
4207 43165,43262,43359,43456,43552,43648,43743,43839,
4208 43934,44028,44123,44217,44311,44405,44499,44592,
4209 44685,44778,44870,44962,45054,45146,45238,45329,
4210 45420,45511,45601,45692,45782,45872,45961,46051,
4211 46140,46229,46318,46406,46494,46583,46670,46758,
4212 46846,46933,47020,47107,47193,47280,47366,47452,
4213 47538,47623,47709,47794,47879,47964,48048,48133,
4214 48217,48301,48385,48468,48552,48635,48718,48801,
4215 48884,48966,49048,49131,49213,49294,49376,49458,
4216 49539,49620,49701,49782,49862,49943,50023,50103,
4217 50183,50263,50342,50422,50501,50580,50659,50738,
4218 50816,50895,50973,51051,51129,51207,51285,51362,
4219 51439,51517,51594,51671,51747,51824,51900,51977,
4220 52053,52129,52205,52280,52356,52432,52507,52582,
4221 52657,52732,52807,52881,52956,53030,53104,53178,
4222 53252,53326,53400,53473,53546,53620,53693,53766,
4223 53839,53911,53984,54056,54129,54201,54273,54345,
4224 54417,54489,54560,54632,54703,54774,54845,54916,
4225 54987,55058,55129,55199,55269,55340,55410,55480,
4226 55550,55620,55689,55759,55828,55898,55967,56036,
4227 56105,56174,56243,56311,56380,56448,56517,56585,
4228 56653,56721,56789,56857,56924,56992,57059,57127,
4229 57194,57261,57328,57395,57462,57529,57595,57662,
4230 57728,57795,57861,57927,57993,58059,58125,58191,
4231 58256,58322,58387,58453,58518,58583,58648,58713,
4232 58778,58843,58908,58972,59037,59101,59165,59230,
4233 59294,59358,59422,59486,59549,59613,59677,59740,
4234 59804,59867,59930,59993,60056,60119,60182,60245,
4235 60308,60370,60433,60495,60558,60620,60682,60744,
4236 60806,60868,60930,60992,61054,61115,61177,61238,
4237 61300,61361,61422,61483,61544,61605,61666,61727,
4238 61788,61848,61909,61969,62030,62090,62150,62211,
4239 62271,62331,62391,62450,62510,62570,62630,62689,
4240 62749,62808,62867,62927,62986,63045,63104,63163,
4241 63222,63281,63340,63398,63457,63515,63574,63632,
4242 63691,63749,63807,63865,63923,63981,64039,64097,
4243 64155,64212,64270,64328,64385,64443,64500,64557,
4244 64614,64672,64729,64786,64843,64900,64956,65013,
4245 65070,65126,65183,65239,65296,65352,65409,65465
4246 };
4247
4248 const png_byte png_sRGB_delta[512] =
4249 {
4250 207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
4251 52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
4252 35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
4253 28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
4254 23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
4255 21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
4256 19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
4257 17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
4258 16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
4259 15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
4260 14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
4261 13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
4262 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
4263 12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
4264 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4265 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4266 11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4267 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4268 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4269 10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4270 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4271 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4272 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4273 9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4274 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4275 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4276 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4277 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4278 8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
4279 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4280 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4281 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
4282 };
4283 #endif /* SIMPLIFIED READ/WRITE sRGB support */
4284
4285 /* SIMPLIFIED READ/WRITE SUPPORT */
4286 #if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4287 defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4288 static int
4289 png_image_free_function(png_voidp argument)
4290 {
4291 png_imagep image = png_voidcast(png_imagep, argument);
4292 png_controlp cp = image->opaque;
4293 png_control c;
4294
4295 /* Double check that we have a png_ptr - it should be impossible to get here
4296 * without one.
4297 */
4298 if (cp->png_ptr == NULL)
4299 return 0;
4300
4301 /* First free any data held in the control structure. */
4302 # ifdef PNG_STDIO_SUPPORTED
4303 if (cp->owned_file)
4304 {
4305 FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr);
4306 cp->owned_file = 0;
4307
4308 /* Ignore errors here. */
4309 if (fp != NULL)
4310 {
4311 cp->png_ptr->io_ptr = NULL;
4312 (void)fclose(fp);
4313 }
4314 }
4315 # endif
4316
4317 /* Copy the control structure so that the original, allocated, version can be
4318 * safely freed. Notice that a png_error here stops the remainder of the
4319 * cleanup, but this is probably fine because that would indicate bad memory
4320 * problems anyway.
4321 */
4322 c = *cp;
4323 image->opaque = &c;
4324 png_free(c.png_ptr, cp);
4325
4326 /* Then the structures, calling the correct API. */
4327 if (c.for_write)
4328 {
4329 # ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4330 png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4331 # else
4332 png_error(c.png_ptr, "simplified write not supported");
4333 # endif
4334 }
4335 else
4336 {
4337 # ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4338 png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4339 # else
4340 png_error(c.png_ptr, "simplified read not supported");
4341 # endif
4342 }
4343
4344 /* Success. */
4345 return 1;
4346 }
4347
4348 void PNGAPI
4349 png_image_free(png_imagep image)
4350 {
4351 /* Safely call the real function, but only if doing so is safe at this point
4352 * (if not inside an error handling context). Otherwise assume
4353 * png_safe_execute will call this API after the return.
4354 */
4355 if (image != NULL && image->opaque != NULL &&
4356 image->opaque->error_buf == NULL)
4357 {
4358 /* Ignore errors here: */
4359 (void)png_safe_execute(image, png_image_free_function, image);
4360 image->opaque = NULL;
4361 }
4362 }
4363
4364 int /* PRIVATE */
4365 png_image_error(png_imagep image, png_const_charp error_message)
4366 {
4367 /* Utility to log an error. */
4368 png_safecat(image->message, (sizeof image->message), 0, error_message);
4369 image->warning_or_error |= PNG_IMAGE_ERROR;
4370 png_image_free(image);
4371 return 0;
4372 }
4373
4374 #endif /* SIMPLIFIED READ/WRITE */
4375 #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */