Mercurial > mm7
comparison lib/lua/lua-5.2.2/ltable.c @ 1866:41cc4dd3c122
Lua 5.2.2 added.
author | Nomad |
---|---|
date | Wed, 16 Oct 2013 13:34:26 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1848:3b39b70e8e93 | 1866:41cc4dd3c122 |
---|---|
1 /* | |
2 ** $Id: ltable.c,v 2.72 2012/09/11 19:37:16 roberto Exp $ | |
3 ** Lua tables (hash) | |
4 ** See Copyright Notice in lua.h | |
5 */ | |
6 | |
7 | |
8 /* | |
9 ** Implementation of tables (aka arrays, objects, or hash tables). | |
10 ** Tables keep its elements in two parts: an array part and a hash part. | |
11 ** Non-negative integer keys are all candidates to be kept in the array | |
12 ** part. The actual size of the array is the largest `n' such that at | |
13 ** least half the slots between 0 and n are in use. | |
14 ** Hash uses a mix of chained scatter table with Brent's variation. | |
15 ** A main invariant of these tables is that, if an element is not | |
16 ** in its main position (i.e. the `original' position that its hash gives | |
17 ** to it), then the colliding element is in its own main position. | |
18 ** Hence even when the load factor reaches 100%, performance remains good. | |
19 */ | |
20 | |
21 #include <string.h> | |
22 | |
23 #define ltable_c | |
24 #define LUA_CORE | |
25 | |
26 #include "lua.h" | |
27 | |
28 #include "ldebug.h" | |
29 #include "ldo.h" | |
30 #include "lgc.h" | |
31 #include "lmem.h" | |
32 #include "lobject.h" | |
33 #include "lstate.h" | |
34 #include "lstring.h" | |
35 #include "ltable.h" | |
36 #include "lvm.h" | |
37 | |
38 | |
39 /* | |
40 ** max size of array part is 2^MAXBITS | |
41 */ | |
42 #if LUAI_BITSINT >= 32 | |
43 #define MAXBITS 30 | |
44 #else | |
45 #define MAXBITS (LUAI_BITSINT-2) | |
46 #endif | |
47 | |
48 #define MAXASIZE (1 << MAXBITS) | |
49 | |
50 | |
51 #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) | |
52 | |
53 #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) | |
54 #define hashboolean(t,p) hashpow2(t, p) | |
55 | |
56 | |
57 /* | |
58 ** for some types, it is better to avoid modulus by power of 2, as | |
59 ** they tend to have many 2 factors. | |
60 */ | |
61 #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) | |
62 | |
63 | |
64 #define hashpointer(t,p) hashmod(t, IntPoint(p)) | |
65 | |
66 | |
67 #define dummynode (&dummynode_) | |
68 | |
69 #define isdummy(n) ((n) == dummynode) | |
70 | |
71 static const Node dummynode_ = { | |
72 {NILCONSTANT}, /* value */ | |
73 {{NILCONSTANT, NULL}} /* key */ | |
74 }; | |
75 | |
76 | |
77 /* | |
78 ** hash for lua_Numbers | |
79 */ | |
80 static Node *hashnum (const Table *t, lua_Number n) { | |
81 int i; | |
82 luai_hashnum(i, n); | |
83 if (i < 0) { | |
84 if (cast(unsigned int, i) == 0u - i) /* use unsigned to avoid overflows */ | |
85 i = 0; /* handle INT_MIN */ | |
86 i = -i; /* must be a positive value */ | |
87 } | |
88 return hashmod(t, i); | |
89 } | |
90 | |
91 | |
92 | |
93 /* | |
94 ** returns the `main' position of an element in a table (that is, the index | |
95 ** of its hash value) | |
96 */ | |
97 static Node *mainposition (const Table *t, const TValue *key) { | |
98 switch (ttype(key)) { | |
99 case LUA_TNUMBER: | |
100 return hashnum(t, nvalue(key)); | |
101 case LUA_TLNGSTR: { | |
102 TString *s = rawtsvalue(key); | |
103 if (s->tsv.extra == 0) { /* no hash? */ | |
104 s->tsv.hash = luaS_hash(getstr(s), s->tsv.len, s->tsv.hash); | |
105 s->tsv.extra = 1; /* now it has its hash */ | |
106 } | |
107 return hashstr(t, rawtsvalue(key)); | |
108 } | |
109 case LUA_TSHRSTR: | |
110 return hashstr(t, rawtsvalue(key)); | |
111 case LUA_TBOOLEAN: | |
112 return hashboolean(t, bvalue(key)); | |
113 case LUA_TLIGHTUSERDATA: | |
114 return hashpointer(t, pvalue(key)); | |
115 case LUA_TLCF: | |
116 return hashpointer(t, fvalue(key)); | |
117 default: | |
118 return hashpointer(t, gcvalue(key)); | |
119 } | |
120 } | |
121 | |
122 | |
123 /* | |
124 ** returns the index for `key' if `key' is an appropriate key to live in | |
125 ** the array part of the table, -1 otherwise. | |
126 */ | |
127 static int arrayindex (const TValue *key) { | |
128 if (ttisnumber(key)) { | |
129 lua_Number n = nvalue(key); | |
130 int k; | |
131 lua_number2int(k, n); | |
132 if (luai_numeq(cast_num(k), n)) | |
133 return k; | |
134 } | |
135 return -1; /* `key' did not match some condition */ | |
136 } | |
137 | |
138 | |
139 /* | |
140 ** returns the index of a `key' for table traversals. First goes all | |
141 ** elements in the array part, then elements in the hash part. The | |
142 ** beginning of a traversal is signaled by -1. | |
143 */ | |
144 static int findindex (lua_State *L, Table *t, StkId key) { | |
145 int i; | |
146 if (ttisnil(key)) return -1; /* first iteration */ | |
147 i = arrayindex(key); | |
148 if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ | |
149 return i-1; /* yes; that's the index (corrected to C) */ | |
150 else { | |
151 Node *n = mainposition(t, key); | |
152 for (;;) { /* check whether `key' is somewhere in the chain */ | |
153 /* key may be dead already, but it is ok to use it in `next' */ | |
154 if (luaV_rawequalobj(gkey(n), key) || | |
155 (ttisdeadkey(gkey(n)) && iscollectable(key) && | |
156 deadvalue(gkey(n)) == gcvalue(key))) { | |
157 i = cast_int(n - gnode(t, 0)); /* key index in hash table */ | |
158 /* hash elements are numbered after array ones */ | |
159 return i + t->sizearray; | |
160 } | |
161 else n = gnext(n); | |
162 if (n == NULL) | |
163 luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */ | |
164 } | |
165 } | |
166 } | |
167 | |
168 | |
169 int luaH_next (lua_State *L, Table *t, StkId key) { | |
170 int i = findindex(L, t, key); /* find original element */ | |
171 for (i++; i < t->sizearray; i++) { /* try first array part */ | |
172 if (!ttisnil(&t->array[i])) { /* a non-nil value? */ | |
173 setnvalue(key, cast_num(i+1)); | |
174 setobj2s(L, key+1, &t->array[i]); | |
175 return 1; | |
176 } | |
177 } | |
178 for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ | |
179 if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ | |
180 setobj2s(L, key, gkey(gnode(t, i))); | |
181 setobj2s(L, key+1, gval(gnode(t, i))); | |
182 return 1; | |
183 } | |
184 } | |
185 return 0; /* no more elements */ | |
186 } | |
187 | |
188 | |
189 /* | |
190 ** {============================================================= | |
191 ** Rehash | |
192 ** ============================================================== | |
193 */ | |
194 | |
195 | |
196 static int computesizes (int nums[], int *narray) { | |
197 int i; | |
198 int twotoi; /* 2^i */ | |
199 int a = 0; /* number of elements smaller than 2^i */ | |
200 int na = 0; /* number of elements to go to array part */ | |
201 int n = 0; /* optimal size for array part */ | |
202 for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { | |
203 if (nums[i] > 0) { | |
204 a += nums[i]; | |
205 if (a > twotoi/2) { /* more than half elements present? */ | |
206 n = twotoi; /* optimal size (till now) */ | |
207 na = a; /* all elements smaller than n will go to array part */ | |
208 } | |
209 } | |
210 if (a == *narray) break; /* all elements already counted */ | |
211 } | |
212 *narray = n; | |
213 lua_assert(*narray/2 <= na && na <= *narray); | |
214 return na; | |
215 } | |
216 | |
217 | |
218 static int countint (const TValue *key, int *nums) { | |
219 int k = arrayindex(key); | |
220 if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ | |
221 nums[luaO_ceillog2(k)]++; /* count as such */ | |
222 return 1; | |
223 } | |
224 else | |
225 return 0; | |
226 } | |
227 | |
228 | |
229 static int numusearray (const Table *t, int *nums) { | |
230 int lg; | |
231 int ttlg; /* 2^lg */ | |
232 int ause = 0; /* summation of `nums' */ | |
233 int i = 1; /* count to traverse all array keys */ | |
234 for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ | |
235 int lc = 0; /* counter */ | |
236 int lim = ttlg; | |
237 if (lim > t->sizearray) { | |
238 lim = t->sizearray; /* adjust upper limit */ | |
239 if (i > lim) | |
240 break; /* no more elements to count */ | |
241 } | |
242 /* count elements in range (2^(lg-1), 2^lg] */ | |
243 for (; i <= lim; i++) { | |
244 if (!ttisnil(&t->array[i-1])) | |
245 lc++; | |
246 } | |
247 nums[lg] += lc; | |
248 ause += lc; | |
249 } | |
250 return ause; | |
251 } | |
252 | |
253 | |
254 static int numusehash (const Table *t, int *nums, int *pnasize) { | |
255 int totaluse = 0; /* total number of elements */ | |
256 int ause = 0; /* summation of `nums' */ | |
257 int i = sizenode(t); | |
258 while (i--) { | |
259 Node *n = &t->node[i]; | |
260 if (!ttisnil(gval(n))) { | |
261 ause += countint(gkey(n), nums); | |
262 totaluse++; | |
263 } | |
264 } | |
265 *pnasize += ause; | |
266 return totaluse; | |
267 } | |
268 | |
269 | |
270 static void setarrayvector (lua_State *L, Table *t, int size) { | |
271 int i; | |
272 luaM_reallocvector(L, t->array, t->sizearray, size, TValue); | |
273 for (i=t->sizearray; i<size; i++) | |
274 setnilvalue(&t->array[i]); | |
275 t->sizearray = size; | |
276 } | |
277 | |
278 | |
279 static void setnodevector (lua_State *L, Table *t, int size) { | |
280 int lsize; | |
281 if (size == 0) { /* no elements to hash part? */ | |
282 t->node = cast(Node *, dummynode); /* use common `dummynode' */ | |
283 lsize = 0; | |
284 } | |
285 else { | |
286 int i; | |
287 lsize = luaO_ceillog2(size); | |
288 if (lsize > MAXBITS) | |
289 luaG_runerror(L, "table overflow"); | |
290 size = twoto(lsize); | |
291 t->node = luaM_newvector(L, size, Node); | |
292 for (i=0; i<size; i++) { | |
293 Node *n = gnode(t, i); | |
294 gnext(n) = NULL; | |
295 setnilvalue(gkey(n)); | |
296 setnilvalue(gval(n)); | |
297 } | |
298 } | |
299 t->lsizenode = cast_byte(lsize); | |
300 t->lastfree = gnode(t, size); /* all positions are free */ | |
301 } | |
302 | |
303 | |
304 void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) { | |
305 int i; | |
306 int oldasize = t->sizearray; | |
307 int oldhsize = t->lsizenode; | |
308 Node *nold = t->node; /* save old hash ... */ | |
309 if (nasize > oldasize) /* array part must grow? */ | |
310 setarrayvector(L, t, nasize); | |
311 /* create new hash part with appropriate size */ | |
312 setnodevector(L, t, nhsize); | |
313 if (nasize < oldasize) { /* array part must shrink? */ | |
314 t->sizearray = nasize; | |
315 /* re-insert elements from vanishing slice */ | |
316 for (i=nasize; i<oldasize; i++) { | |
317 if (!ttisnil(&t->array[i])) | |
318 luaH_setint(L, t, i + 1, &t->array[i]); | |
319 } | |
320 /* shrink array */ | |
321 luaM_reallocvector(L, t->array, oldasize, nasize, TValue); | |
322 } | |
323 /* re-insert elements from hash part */ | |
324 for (i = twoto(oldhsize) - 1; i >= 0; i--) { | |
325 Node *old = nold+i; | |
326 if (!ttisnil(gval(old))) { | |
327 /* doesn't need barrier/invalidate cache, as entry was | |
328 already present in the table */ | |
329 setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); | |
330 } | |
331 } | |
332 if (!isdummy(nold)) | |
333 luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old array */ | |
334 } | |
335 | |
336 | |
337 void luaH_resizearray (lua_State *L, Table *t, int nasize) { | |
338 int nsize = isdummy(t->node) ? 0 : sizenode(t); | |
339 luaH_resize(L, t, nasize, nsize); | |
340 } | |
341 | |
342 | |
343 static void rehash (lua_State *L, Table *t, const TValue *ek) { | |
344 int nasize, na; | |
345 int nums[MAXBITS+1]; /* nums[i] = number of keys with 2^(i-1) < k <= 2^i */ | |
346 int i; | |
347 int totaluse; | |
348 for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ | |
349 nasize = numusearray(t, nums); /* count keys in array part */ | |
350 totaluse = nasize; /* all those keys are integer keys */ | |
351 totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ | |
352 /* count extra key */ | |
353 nasize += countint(ek, nums); | |
354 totaluse++; | |
355 /* compute new size for array part */ | |
356 na = computesizes(nums, &nasize); | |
357 /* resize the table to new computed sizes */ | |
358 luaH_resize(L, t, nasize, totaluse - na); | |
359 } | |
360 | |
361 | |
362 | |
363 /* | |
364 ** }============================================================= | |
365 */ | |
366 | |
367 | |
368 Table *luaH_new (lua_State *L) { | |
369 Table *t = &luaC_newobj(L, LUA_TTABLE, sizeof(Table), NULL, 0)->h; | |
370 t->metatable = NULL; | |
371 t->flags = cast_byte(~0); | |
372 t->array = NULL; | |
373 t->sizearray = 0; | |
374 setnodevector(L, t, 0); | |
375 return t; | |
376 } | |
377 | |
378 | |
379 void luaH_free (lua_State *L, Table *t) { | |
380 if (!isdummy(t->node)) | |
381 luaM_freearray(L, t->node, cast(size_t, sizenode(t))); | |
382 luaM_freearray(L, t->array, t->sizearray); | |
383 luaM_free(L, t); | |
384 } | |
385 | |
386 | |
387 static Node *getfreepos (Table *t) { | |
388 while (t->lastfree > t->node) { | |
389 t->lastfree--; | |
390 if (ttisnil(gkey(t->lastfree))) | |
391 return t->lastfree; | |
392 } | |
393 return NULL; /* could not find a free place */ | |
394 } | |
395 | |
396 | |
397 | |
398 /* | |
399 ** inserts a new key into a hash table; first, check whether key's main | |
400 ** position is free. If not, check whether colliding node is in its main | |
401 ** position or not: if it is not, move colliding node to an empty place and | |
402 ** put new key in its main position; otherwise (colliding node is in its main | |
403 ** position), new key goes to an empty position. | |
404 */ | |
405 TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { | |
406 Node *mp; | |
407 if (ttisnil(key)) luaG_runerror(L, "table index is nil"); | |
408 else if (ttisnumber(key) && luai_numisnan(L, nvalue(key))) | |
409 luaG_runerror(L, "table index is NaN"); | |
410 mp = mainposition(t, key); | |
411 if (!ttisnil(gval(mp)) || isdummy(mp)) { /* main position is taken? */ | |
412 Node *othern; | |
413 Node *n = getfreepos(t); /* get a free place */ | |
414 if (n == NULL) { /* cannot find a free place? */ | |
415 rehash(L, t, key); /* grow table */ | |
416 /* whatever called 'newkey' take care of TM cache and GC barrier */ | |
417 return luaH_set(L, t, key); /* insert key into grown table */ | |
418 } | |
419 lua_assert(!isdummy(n)); | |
420 othern = mainposition(t, gkey(mp)); | |
421 if (othern != mp) { /* is colliding node out of its main position? */ | |
422 /* yes; move colliding node into free position */ | |
423 while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ | |
424 gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ | |
425 *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ | |
426 gnext(mp) = NULL; /* now `mp' is free */ | |
427 setnilvalue(gval(mp)); | |
428 } | |
429 else { /* colliding node is in its own main position */ | |
430 /* new node will go into free position */ | |
431 gnext(n) = gnext(mp); /* chain new position */ | |
432 gnext(mp) = n; | |
433 mp = n; | |
434 } | |
435 } | |
436 setobj2t(L, gkey(mp), key); | |
437 luaC_barrierback(L, obj2gco(t), key); | |
438 lua_assert(ttisnil(gval(mp))); | |
439 return gval(mp); | |
440 } | |
441 | |
442 | |
443 /* | |
444 ** search function for integers | |
445 */ | |
446 const TValue *luaH_getint (Table *t, int key) { | |
447 /* (1 <= key && key <= t->sizearray) */ | |
448 if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) | |
449 return &t->array[key-1]; | |
450 else { | |
451 lua_Number nk = cast_num(key); | |
452 Node *n = hashnum(t, nk); | |
453 do { /* check whether `key' is somewhere in the chain */ | |
454 if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) | |
455 return gval(n); /* that's it */ | |
456 else n = gnext(n); | |
457 } while (n); | |
458 return luaO_nilobject; | |
459 } | |
460 } | |
461 | |
462 | |
463 /* | |
464 ** search function for short strings | |
465 */ | |
466 const TValue *luaH_getstr (Table *t, TString *key) { | |
467 Node *n = hashstr(t, key); | |
468 lua_assert(key->tsv.tt == LUA_TSHRSTR); | |
469 do { /* check whether `key' is somewhere in the chain */ | |
470 if (ttisshrstring(gkey(n)) && eqshrstr(rawtsvalue(gkey(n)), key)) | |
471 return gval(n); /* that's it */ | |
472 else n = gnext(n); | |
473 } while (n); | |
474 return luaO_nilobject; | |
475 } | |
476 | |
477 | |
478 /* | |
479 ** main search function | |
480 */ | |
481 const TValue *luaH_get (Table *t, const TValue *key) { | |
482 switch (ttype(key)) { | |
483 case LUA_TSHRSTR: return luaH_getstr(t, rawtsvalue(key)); | |
484 case LUA_TNIL: return luaO_nilobject; | |
485 case LUA_TNUMBER: { | |
486 int k; | |
487 lua_Number n = nvalue(key); | |
488 lua_number2int(k, n); | |
489 if (luai_numeq(cast_num(k), n)) /* index is int? */ | |
490 return luaH_getint(t, k); /* use specialized version */ | |
491 /* else go through */ | |
492 } | |
493 default: { | |
494 Node *n = mainposition(t, key); | |
495 do { /* check whether `key' is somewhere in the chain */ | |
496 if (luaV_rawequalobj(gkey(n), key)) | |
497 return gval(n); /* that's it */ | |
498 else n = gnext(n); | |
499 } while (n); | |
500 return luaO_nilobject; | |
501 } | |
502 } | |
503 } | |
504 | |
505 | |
506 /* | |
507 ** beware: when using this function you probably need to check a GC | |
508 ** barrier and invalidate the TM cache. | |
509 */ | |
510 TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { | |
511 const TValue *p = luaH_get(t, key); | |
512 if (p != luaO_nilobject) | |
513 return cast(TValue *, p); | |
514 else return luaH_newkey(L, t, key); | |
515 } | |
516 | |
517 | |
518 void luaH_setint (lua_State *L, Table *t, int key, TValue *value) { | |
519 const TValue *p = luaH_getint(t, key); | |
520 TValue *cell; | |
521 if (p != luaO_nilobject) | |
522 cell = cast(TValue *, p); | |
523 else { | |
524 TValue k; | |
525 setnvalue(&k, cast_num(key)); | |
526 cell = luaH_newkey(L, t, &k); | |
527 } | |
528 setobj2t(L, cell, value); | |
529 } | |
530 | |
531 | |
532 static int unbound_search (Table *t, unsigned int j) { | |
533 unsigned int i = j; /* i is zero or a present index */ | |
534 j++; | |
535 /* find `i' and `j' such that i is present and j is not */ | |
536 while (!ttisnil(luaH_getint(t, j))) { | |
537 i = j; | |
538 j *= 2; | |
539 if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ | |
540 /* table was built with bad purposes: resort to linear search */ | |
541 i = 1; | |
542 while (!ttisnil(luaH_getint(t, i))) i++; | |
543 return i - 1; | |
544 } | |
545 } | |
546 /* now do a binary search between them */ | |
547 while (j - i > 1) { | |
548 unsigned int m = (i+j)/2; | |
549 if (ttisnil(luaH_getint(t, m))) j = m; | |
550 else i = m; | |
551 } | |
552 return i; | |
553 } | |
554 | |
555 | |
556 /* | |
557 ** Try to find a boundary in table `t'. A `boundary' is an integer index | |
558 ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). | |
559 */ | |
560 int luaH_getn (Table *t) { | |
561 unsigned int j = t->sizearray; | |
562 if (j > 0 && ttisnil(&t->array[j - 1])) { | |
563 /* there is a boundary in the array part: (binary) search for it */ | |
564 unsigned int i = 0; | |
565 while (j - i > 1) { | |
566 unsigned int m = (i+j)/2; | |
567 if (ttisnil(&t->array[m - 1])) j = m; | |
568 else i = m; | |
569 } | |
570 return i; | |
571 } | |
572 /* else must find a boundary in hash part */ | |
573 else if (isdummy(t->node)) /* hash part is empty? */ | |
574 return j; /* that is easy... */ | |
575 else return unbound_search(t, j); | |
576 } | |
577 | |
578 | |
579 | |
580 #if defined(LUA_DEBUG) | |
581 | |
582 Node *luaH_mainposition (const Table *t, const TValue *key) { | |
583 return mainposition(t, key); | |
584 } | |
585 | |
586 int luaH_isdummy (Node *n) { return isdummy(n); } | |
587 | |
588 #endif |