Mercurial > mm7
comparison lib/lua/lua-5.2.2/lopcodes.h @ 1866:41cc4dd3c122
Lua 5.2.2 added.
author | Nomad |
---|---|
date | Wed, 16 Oct 2013 13:34:26 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1848:3b39b70e8e93 | 1866:41cc4dd3c122 |
---|---|
1 /* | |
2 ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $ | |
3 ** Opcodes for Lua virtual machine | |
4 ** See Copyright Notice in lua.h | |
5 */ | |
6 | |
7 #ifndef lopcodes_h | |
8 #define lopcodes_h | |
9 | |
10 #include "llimits.h" | |
11 | |
12 | |
13 /*=========================================================================== | |
14 We assume that instructions are unsigned numbers. | |
15 All instructions have an opcode in the first 6 bits. | |
16 Instructions can have the following fields: | |
17 `A' : 8 bits | |
18 `B' : 9 bits | |
19 `C' : 9 bits | |
20 'Ax' : 26 bits ('A', 'B', and 'C' together) | |
21 `Bx' : 18 bits (`B' and `C' together) | |
22 `sBx' : signed Bx | |
23 | |
24 A signed argument is represented in excess K; that is, the number | |
25 value is the unsigned value minus K. K is exactly the maximum value | |
26 for that argument (so that -max is represented by 0, and +max is | |
27 represented by 2*max), which is half the maximum for the corresponding | |
28 unsigned argument. | |
29 ===========================================================================*/ | |
30 | |
31 | |
32 enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ | |
33 | |
34 | |
35 /* | |
36 ** size and position of opcode arguments. | |
37 */ | |
38 #define SIZE_C 9 | |
39 #define SIZE_B 9 | |
40 #define SIZE_Bx (SIZE_C + SIZE_B) | |
41 #define SIZE_A 8 | |
42 #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) | |
43 | |
44 #define SIZE_OP 6 | |
45 | |
46 #define POS_OP 0 | |
47 #define POS_A (POS_OP + SIZE_OP) | |
48 #define POS_C (POS_A + SIZE_A) | |
49 #define POS_B (POS_C + SIZE_C) | |
50 #define POS_Bx POS_C | |
51 #define POS_Ax POS_A | |
52 | |
53 | |
54 /* | |
55 ** limits for opcode arguments. | |
56 ** we use (signed) int to manipulate most arguments, | |
57 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | |
58 */ | |
59 #if SIZE_Bx < LUAI_BITSINT-1 | |
60 #define MAXARG_Bx ((1<<SIZE_Bx)-1) | |
61 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | |
62 #else | |
63 #define MAXARG_Bx MAX_INT | |
64 #define MAXARG_sBx MAX_INT | |
65 #endif | |
66 | |
67 #if SIZE_Ax < LUAI_BITSINT-1 | |
68 #define MAXARG_Ax ((1<<SIZE_Ax)-1) | |
69 #else | |
70 #define MAXARG_Ax MAX_INT | |
71 #endif | |
72 | |
73 | |
74 #define MAXARG_A ((1<<SIZE_A)-1) | |
75 #define MAXARG_B ((1<<SIZE_B)-1) | |
76 #define MAXARG_C ((1<<SIZE_C)-1) | |
77 | |
78 | |
79 /* creates a mask with `n' 1 bits at position `p' */ | |
80 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) | |
81 | |
82 /* creates a mask with `n' 0 bits at position `p' */ | |
83 #define MASK0(n,p) (~MASK1(n,p)) | |
84 | |
85 /* | |
86 ** the following macros help to manipulate instructions | |
87 */ | |
88 | |
89 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | |
90 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | |
91 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | |
92 | |
93 #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) | |
94 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ | |
95 ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) | |
96 | |
97 #define GETARG_A(i) getarg(i, POS_A, SIZE_A) | |
98 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) | |
99 | |
100 #define GETARG_B(i) getarg(i, POS_B, SIZE_B) | |
101 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) | |
102 | |
103 #define GETARG_C(i) getarg(i, POS_C, SIZE_C) | |
104 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) | |
105 | |
106 #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) | |
107 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) | |
108 | |
109 #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) | |
110 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) | |
111 | |
112 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | |
113 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | |
114 | |
115 | |
116 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | |
117 | (cast(Instruction, a)<<POS_A) \ | |
118 | (cast(Instruction, b)<<POS_B) \ | |
119 | (cast(Instruction, c)<<POS_C)) | |
120 | |
121 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | |
122 | (cast(Instruction, a)<<POS_A) \ | |
123 | (cast(Instruction, bc)<<POS_Bx)) | |
124 | |
125 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | |
126 | (cast(Instruction, a)<<POS_Ax)) | |
127 | |
128 | |
129 /* | |
130 ** Macros to operate RK indices | |
131 */ | |
132 | |
133 /* this bit 1 means constant (0 means register) */ | |
134 #define BITRK (1 << (SIZE_B - 1)) | |
135 | |
136 /* test whether value is a constant */ | |
137 #define ISK(x) ((x) & BITRK) | |
138 | |
139 /* gets the index of the constant */ | |
140 #define INDEXK(r) ((int)(r) & ~BITRK) | |
141 | |
142 #define MAXINDEXRK (BITRK - 1) | |
143 | |
144 /* code a constant index as a RK value */ | |
145 #define RKASK(x) ((x) | BITRK) | |
146 | |
147 | |
148 /* | |
149 ** invalid register that fits in 8 bits | |
150 */ | |
151 #define NO_REG MAXARG_A | |
152 | |
153 | |
154 /* | |
155 ** R(x) - register | |
156 ** Kst(x) - constant (in constant table) | |
157 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | |
158 */ | |
159 | |
160 | |
161 /* | |
162 ** grep "ORDER OP" if you change these enums | |
163 */ | |
164 | |
165 typedef enum { | |
166 /*---------------------------------------------------------------------- | |
167 name args description | |
168 ------------------------------------------------------------------------*/ | |
169 OP_MOVE,/* A B R(A) := R(B) */ | |
170 OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | |
171 OP_LOADKX,/* A R(A) := Kst(extra arg) */ | |
172 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | |
173 OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ | |
174 OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | |
175 | |
176 OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ | |
177 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | |
178 | |
179 OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ | |
180 OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | |
181 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | |
182 | |
183 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | |
184 | |
185 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | |
186 | |
187 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | |
188 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | |
189 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | |
190 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | |
191 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | |
192 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | |
193 OP_UNM,/* A B R(A) := -R(B) */ | |
194 OP_NOT,/* A B R(A) := not R(B) */ | |
195 OP_LEN,/* A B R(A) := length of R(B) */ | |
196 | |
197 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | |
198 | |
199 OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */ | |
200 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | |
201 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | |
202 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | |
203 | |
204 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | |
205 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | |
206 | |
207 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | |
208 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | |
209 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | |
210 | |
211 OP_FORLOOP,/* A sBx R(A)+=R(A+2); | |
212 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | |
213 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | |
214 | |
215 OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ | |
216 OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ | |
217 | |
218 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | |
219 | |
220 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ | |
221 | |
222 OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ | |
223 | |
224 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ | |
225 } OpCode; | |
226 | |
227 | |
228 #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) | |
229 | |
230 | |
231 | |
232 /*=========================================================================== | |
233 Notes: | |
234 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is | |
235 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, | |
236 OP_SETLIST) may use `top'. | |
237 | |
238 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | |
239 set top (like in OP_CALL with C == 0). | |
240 | |
241 (*) In OP_RETURN, if (B == 0) then return up to `top'. | |
242 | |
243 (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next | |
244 'instruction' is EXTRAARG(real C). | |
245 | |
246 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. | |
247 | |
248 (*) For comparisons, A specifies what condition the test should accept | |
249 (true or false). | |
250 | |
251 (*) All `skips' (pc++) assume that next instruction is a jump. | |
252 | |
253 ===========================================================================*/ | |
254 | |
255 | |
256 /* | |
257 ** masks for instruction properties. The format is: | |
258 ** bits 0-1: op mode | |
259 ** bits 2-3: C arg mode | |
260 ** bits 4-5: B arg mode | |
261 ** bit 6: instruction set register A | |
262 ** bit 7: operator is a test (next instruction must be a jump) | |
263 */ | |
264 | |
265 enum OpArgMask { | |
266 OpArgN, /* argument is not used */ | |
267 OpArgU, /* argument is used */ | |
268 OpArgR, /* argument is a register or a jump offset */ | |
269 OpArgK /* argument is a constant or register/constant */ | |
270 }; | |
271 | |
272 LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; | |
273 | |
274 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | |
275 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | |
276 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | |
277 #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | |
278 #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | |
279 | |
280 | |
281 LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | |
282 | |
283 | |
284 /* number of list items to accumulate before a SETLIST instruction */ | |
285 #define LFIELDS_PER_FLUSH 50 | |
286 | |
287 | |
288 #endif |