1866
|
1 /*
|
|
2 ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $
|
|
3 ** Opcodes for Lua virtual machine
|
|
4 ** See Copyright Notice in lua.h
|
|
5 */
|
|
6
|
|
7 #ifndef lopcodes_h
|
|
8 #define lopcodes_h
|
|
9
|
|
10 #include "llimits.h"
|
|
11
|
|
12
|
|
13 /*===========================================================================
|
|
14 We assume that instructions are unsigned numbers.
|
|
15 All instructions have an opcode in the first 6 bits.
|
|
16 Instructions can have the following fields:
|
|
17 `A' : 8 bits
|
|
18 `B' : 9 bits
|
|
19 `C' : 9 bits
|
|
20 'Ax' : 26 bits ('A', 'B', and 'C' together)
|
|
21 `Bx' : 18 bits (`B' and `C' together)
|
|
22 `sBx' : signed Bx
|
|
23
|
|
24 A signed argument is represented in excess K; that is, the number
|
|
25 value is the unsigned value minus K. K is exactly the maximum value
|
|
26 for that argument (so that -max is represented by 0, and +max is
|
|
27 represented by 2*max), which is half the maximum for the corresponding
|
|
28 unsigned argument.
|
|
29 ===========================================================================*/
|
|
30
|
|
31
|
|
32 enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
|
|
33
|
|
34
|
|
35 /*
|
|
36 ** size and position of opcode arguments.
|
|
37 */
|
|
38 #define SIZE_C 9
|
|
39 #define SIZE_B 9
|
|
40 #define SIZE_Bx (SIZE_C + SIZE_B)
|
|
41 #define SIZE_A 8
|
|
42 #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
|
|
43
|
|
44 #define SIZE_OP 6
|
|
45
|
|
46 #define POS_OP 0
|
|
47 #define POS_A (POS_OP + SIZE_OP)
|
|
48 #define POS_C (POS_A + SIZE_A)
|
|
49 #define POS_B (POS_C + SIZE_C)
|
|
50 #define POS_Bx POS_C
|
|
51 #define POS_Ax POS_A
|
|
52
|
|
53
|
|
54 /*
|
|
55 ** limits for opcode arguments.
|
|
56 ** we use (signed) int to manipulate most arguments,
|
|
57 ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
|
|
58 */
|
|
59 #if SIZE_Bx < LUAI_BITSINT-1
|
|
60 #define MAXARG_Bx ((1<<SIZE_Bx)-1)
|
|
61 #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */
|
|
62 #else
|
|
63 #define MAXARG_Bx MAX_INT
|
|
64 #define MAXARG_sBx MAX_INT
|
|
65 #endif
|
|
66
|
|
67 #if SIZE_Ax < LUAI_BITSINT-1
|
|
68 #define MAXARG_Ax ((1<<SIZE_Ax)-1)
|
|
69 #else
|
|
70 #define MAXARG_Ax MAX_INT
|
|
71 #endif
|
|
72
|
|
73
|
|
74 #define MAXARG_A ((1<<SIZE_A)-1)
|
|
75 #define MAXARG_B ((1<<SIZE_B)-1)
|
|
76 #define MAXARG_C ((1<<SIZE_C)-1)
|
|
77
|
|
78
|
|
79 /* creates a mask with `n' 1 bits at position `p' */
|
|
80 #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
|
|
81
|
|
82 /* creates a mask with `n' 0 bits at position `p' */
|
|
83 #define MASK0(n,p) (~MASK1(n,p))
|
|
84
|
|
85 /*
|
|
86 ** the following macros help to manipulate instructions
|
|
87 */
|
|
88
|
|
89 #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
|
|
90 #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
|
|
91 ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
|
|
92
|
|
93 #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0)))
|
|
94 #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
|
|
95 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
|
|
96
|
|
97 #define GETARG_A(i) getarg(i, POS_A, SIZE_A)
|
|
98 #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
|
|
99
|
|
100 #define GETARG_B(i) getarg(i, POS_B, SIZE_B)
|
|
101 #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
|
|
102
|
|
103 #define GETARG_C(i) getarg(i, POS_C, SIZE_C)
|
|
104 #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
|
|
105
|
|
106 #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
|
|
107 #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
|
|
108
|
|
109 #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
|
|
110 #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
|
|
111
|
|
112 #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx)
|
|
113 #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
|
|
114
|
|
115
|
|
116 #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \
|
|
117 | (cast(Instruction, a)<<POS_A) \
|
|
118 | (cast(Instruction, b)<<POS_B) \
|
|
119 | (cast(Instruction, c)<<POS_C))
|
|
120
|
|
121 #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
|
|
122 | (cast(Instruction, a)<<POS_A) \
|
|
123 | (cast(Instruction, bc)<<POS_Bx))
|
|
124
|
|
125 #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
|
|
126 | (cast(Instruction, a)<<POS_Ax))
|
|
127
|
|
128
|
|
129 /*
|
|
130 ** Macros to operate RK indices
|
|
131 */
|
|
132
|
|
133 /* this bit 1 means constant (0 means register) */
|
|
134 #define BITRK (1 << (SIZE_B - 1))
|
|
135
|
|
136 /* test whether value is a constant */
|
|
137 #define ISK(x) ((x) & BITRK)
|
|
138
|
|
139 /* gets the index of the constant */
|
|
140 #define INDEXK(r) ((int)(r) & ~BITRK)
|
|
141
|
|
142 #define MAXINDEXRK (BITRK - 1)
|
|
143
|
|
144 /* code a constant index as a RK value */
|
|
145 #define RKASK(x) ((x) | BITRK)
|
|
146
|
|
147
|
|
148 /*
|
|
149 ** invalid register that fits in 8 bits
|
|
150 */
|
|
151 #define NO_REG MAXARG_A
|
|
152
|
|
153
|
|
154 /*
|
|
155 ** R(x) - register
|
|
156 ** Kst(x) - constant (in constant table)
|
|
157 ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
|
|
158 */
|
|
159
|
|
160
|
|
161 /*
|
|
162 ** grep "ORDER OP" if you change these enums
|
|
163 */
|
|
164
|
|
165 typedef enum {
|
|
166 /*----------------------------------------------------------------------
|
|
167 name args description
|
|
168 ------------------------------------------------------------------------*/
|
|
169 OP_MOVE,/* A B R(A) := R(B) */
|
|
170 OP_LOADK,/* A Bx R(A) := Kst(Bx) */
|
|
171 OP_LOADKX,/* A R(A) := Kst(extra arg) */
|
|
172 OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
|
|
173 OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
|
|
174 OP_GETUPVAL,/* A B R(A) := UpValue[B] */
|
|
175
|
|
176 OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
|
|
177 OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
|
|
178
|
|
179 OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
|
|
180 OP_SETUPVAL,/* A B UpValue[B] := R(A) */
|
|
181 OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
|
|
182
|
|
183 OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
|
|
184
|
|
185 OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
|
|
186
|
|
187 OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
|
|
188 OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
|
|
189 OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
|
|
190 OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
|
|
191 OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
|
|
192 OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
|
|
193 OP_UNM,/* A B R(A) := -R(B) */
|
|
194 OP_NOT,/* A B R(A) := not R(B) */
|
|
195 OP_LEN,/* A B R(A) := length of R(B) */
|
|
196
|
|
197 OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
|
|
198
|
|
199 OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */
|
|
200 OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
|
|
201 OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
|
|
202 OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
|
|
203
|
|
204 OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
|
|
205 OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
|
|
206
|
|
207 OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
208 OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
|
|
209 OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
|
|
210
|
|
211 OP_FORLOOP,/* A sBx R(A)+=R(A+2);
|
|
212 if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
|
|
213 OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
|
|
214
|
|
215 OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
|
|
216 OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
|
|
217
|
|
218 OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
|
|
219
|
|
220 OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
|
|
221
|
|
222 OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
|
|
223
|
|
224 OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
|
|
225 } OpCode;
|
|
226
|
|
227
|
|
228 #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
|
|
229
|
|
230
|
|
231
|
|
232 /*===========================================================================
|
|
233 Notes:
|
|
234 (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
|
|
235 set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
|
|
236 OP_SETLIST) may use `top'.
|
|
237
|
|
238 (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
|
|
239 set top (like in OP_CALL with C == 0).
|
|
240
|
|
241 (*) In OP_RETURN, if (B == 0) then return up to `top'.
|
|
242
|
|
243 (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
|
|
244 'instruction' is EXTRAARG(real C).
|
|
245
|
|
246 (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
|
|
247
|
|
248 (*) For comparisons, A specifies what condition the test should accept
|
|
249 (true or false).
|
|
250
|
|
251 (*) All `skips' (pc++) assume that next instruction is a jump.
|
|
252
|
|
253 ===========================================================================*/
|
|
254
|
|
255
|
|
256 /*
|
|
257 ** masks for instruction properties. The format is:
|
|
258 ** bits 0-1: op mode
|
|
259 ** bits 2-3: C arg mode
|
|
260 ** bits 4-5: B arg mode
|
|
261 ** bit 6: instruction set register A
|
|
262 ** bit 7: operator is a test (next instruction must be a jump)
|
|
263 */
|
|
264
|
|
265 enum OpArgMask {
|
|
266 OpArgN, /* argument is not used */
|
|
267 OpArgU, /* argument is used */
|
|
268 OpArgR, /* argument is a register or a jump offset */
|
|
269 OpArgK /* argument is a constant or register/constant */
|
|
270 };
|
|
271
|
|
272 LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
|
|
273
|
|
274 #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
|
|
275 #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
|
|
276 #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
|
|
277 #define testAMode(m) (luaP_opmodes[m] & (1 << 6))
|
|
278 #define testTMode(m) (luaP_opmodes[m] & (1 << 7))
|
|
279
|
|
280
|
|
281 LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
|
|
282
|
|
283
|
|
284 /* number of list items to accumulate before a SETLIST instruction */
|
|
285 #define LFIELDS_PER_FLUSH 50
|
|
286
|
|
287
|
|
288 #endif
|