Mercurial > might-and-magic-trilogy
comparison lib/zlib/inftrees.c @ 0:8b8875f5b359
Initial commit
author | Nomad |
---|---|
date | Fri, 05 Oct 2012 16:07:14 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8b8875f5b359 |
---|---|
1 /* inftrees.c -- generate Huffman trees for efficient decoding | |
2 * Copyright (C) 1995-1998 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 #include "zutil.h" | |
7 #include "inftrees.h" | |
8 | |
9 #if !defined(BUILDFIXED) && !defined(STDC) | |
10 # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */ | |
11 #endif | |
12 | |
13 const char inflate_copyright[] = | |
14 " inflate 1.1.3 Copyright 1995-1998 Mark Adler "; | |
15 /* | |
16 If you use the zlib library in a product, an acknowledgment is welcome | |
17 in the documentation of your product. If for some reason you cannot | |
18 include such an acknowledgment, I would appreciate that you keep this | |
19 copyright string in the executable of your product. | |
20 */ | |
21 struct internal_state {int dummy;}; /* for buggy compilers */ | |
22 | |
23 /* simplify the use of the inflate_huft type with some defines */ | |
24 #define exop word.what.Exop | |
25 #define bits word.what.Bits | |
26 | |
27 | |
28 local int huft_build OF(( | |
29 uIntf *, /* code lengths in bits */ | |
30 uInt, /* number of codes */ | |
31 uInt, /* number of "simple" codes */ | |
32 const uIntf *, /* list of base values for non-simple codes */ | |
33 const uIntf *, /* list of extra bits for non-simple codes */ | |
34 inflate_huft * FAR*,/* result: starting table */ | |
35 uIntf *, /* maximum lookup bits (returns actual) */ | |
36 inflate_huft *, /* space for trees */ | |
37 uInt *, /* hufts used in space */ | |
38 uIntf * )); /* space for values */ | |
39 | |
40 /* Tables for deflate from PKZIP's appnote.txt. */ | |
41 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ | |
42 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
43 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |
44 /* see note #13 above about 258 */ | |
45 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ | |
46 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
47 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ | |
48 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ | |
49 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
50 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
51 8193, 12289, 16385, 24577}; | |
52 local const uInt cpdext[30] = { /* Extra bits for distance codes */ | |
53 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
54 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
55 12, 12, 13, 13}; | |
56 | |
57 /* | |
58 Huffman code decoding is performed using a multi-level table lookup. | |
59 The fastest way to decode is to simply build a lookup table whose | |
60 size is determined by the longest code. However, the time it takes | |
61 to build this table can also be a factor if the data being decoded | |
62 is not very long. The most common codes are necessarily the | |
63 shortest codes, so those codes dominate the decoding time, and hence | |
64 the speed. The idea is you can have a shorter table that decodes the | |
65 shorter, more probable codes, and then point to subsidiary tables for | |
66 the longer codes. The time it costs to decode the longer codes is | |
67 then traded against the time it takes to make longer tables. | |
68 | |
69 This results of this trade are in the variables lbits and dbits | |
70 below. lbits is the number of bits the first level table for literal/ | |
71 length codes can decode in one step, and dbits is the same thing for | |
72 the distance codes. Subsequent tables are also less than or equal to | |
73 those sizes. These values may be adjusted either when all of the | |
74 codes are shorter than that, in which case the longest code length in | |
75 bits is used, or when the shortest code is *longer* than the requested | |
76 table size, in which case the length of the shortest code in bits is | |
77 used. | |
78 | |
79 There are two different values for the two tables, since they code a | |
80 different number of possibilities each. The literal/length table | |
81 codes 286 possible values, or in a flat code, a little over eight | |
82 bits. The distance table codes 30 possible values, or a little less | |
83 than five bits, flat. The optimum values for speed end up being | |
84 about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |
85 The optimum values may differ though from machine to machine, and | |
86 possibly even between compilers. Your mileage may vary. | |
87 */ | |
88 | |
89 | |
90 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ | |
91 #define BMAX 15 /* maximum bit length of any code */ | |
92 | |
93 local int huft_build(b, n, s, d, e, t, m, hp, hn, v) | |
94 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ | |
95 uInt n; /* number of codes (assumed <= 288) */ | |
96 uInt s; /* number of simple-valued codes (0..s-1) */ | |
97 const uIntf *d; /* list of base values for non-simple codes */ | |
98 const uIntf *e; /* list of extra bits for non-simple codes */ | |
99 inflate_huft * FAR *t; /* result: starting table */ | |
100 uIntf *m; /* maximum lookup bits, returns actual */ | |
101 inflate_huft *hp; /* space for trees */ | |
102 uInt *hn; /* hufts used in space */ | |
103 uIntf *v; /* working area: values in order of bit length */ | |
104 /* Given a list of code lengths and a maximum table size, make a set of | |
105 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR | |
106 if the given code set is incomplete (the tables are still built in this | |
107 case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of | |
108 lengths), or Z_MEM_ERROR if not enough memory. */ | |
109 { | |
110 | |
111 uInt a; /* counter for codes of length k */ | |
112 uInt c[BMAX+1]; /* bit length count table */ | |
113 uInt f; /* i repeats in table every f entries */ | |
114 int g; /* maximum code length */ | |
115 int h; /* table level */ | |
116 register uInt i; /* counter, current code */ | |
117 register uInt j; /* counter */ | |
118 register int k; /* number of bits in current code */ | |
119 int l; /* bits per table (returned in m) */ | |
120 uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */ | |
121 register uIntf *p; /* pointer into c[], b[], or v[] */ | |
122 inflate_huft *q; /* points to current table */ | |
123 struct inflate_huft_s r; /* table entry for structure assignment */ | |
124 inflate_huft *u[BMAX]; /* table stack */ | |
125 register int w; /* bits before this table == (l * h) */ | |
126 uInt x[BMAX+1]; /* bit offsets, then code stack */ | |
127 uIntf *xp; /* pointer into x */ | |
128 int y; /* number of dummy codes added */ | |
129 uInt z; /* number of entries in current table */ | |
130 | |
131 | |
132 /* Generate counts for each bit length */ | |
133 p = c; | |
134 #define C0 *p++ = 0; | |
135 #define C2 C0 C0 C0 C0 | |
136 #define C4 C2 C2 C2 C2 | |
137 C4 /* clear c[]--assume BMAX+1 is 16 */ | |
138 p = b; i = n; | |
139 do { | |
140 c[*p++]++; /* assume all entries <= BMAX */ | |
141 } while (--i); | |
142 if (c[0] == n) /* null input--all zero length codes */ | |
143 { | |
144 *t = (inflate_huft *)Z_NULL; | |
145 *m = 0; | |
146 return Z_OK; | |
147 } | |
148 | |
149 | |
150 /* Find minimum and maximum length, bound *m by those */ | |
151 l = *m; | |
152 for (j = 1; j <= BMAX; j++) | |
153 if (c[j]) | |
154 break; | |
155 k = j; /* minimum code length */ | |
156 if ((uInt)l < j) | |
157 l = j; | |
158 for (i = BMAX; i; i--) | |
159 if (c[i]) | |
160 break; | |
161 g = i; /* maximum code length */ | |
162 if ((uInt)l > i) | |
163 l = i; | |
164 *m = l; | |
165 | |
166 | |
167 /* Adjust last length count to fill out codes, if needed */ | |
168 for (y = 1 << j; j < i; j++, y <<= 1) | |
169 if ((y -= c[j]) < 0) | |
170 return Z_DATA_ERROR; | |
171 if ((y -= c[i]) < 0) | |
172 return Z_DATA_ERROR; | |
173 c[i] += y; | |
174 | |
175 | |
176 /* Generate starting offsets into the value table for each length */ | |
177 x[1] = j = 0; | |
178 p = c + 1; xp = x + 2; | |
179 while (--i) { /* note that i == g from above */ | |
180 *xp++ = (j += *p++); | |
181 } | |
182 | |
183 | |
184 /* Make a table of values in order of bit lengths */ | |
185 p = b; i = 0; | |
186 do { | |
187 if ((j = *p++) != 0) | |
188 v[x[j]++] = i; | |
189 } while (++i < n); | |
190 n = x[g]; /* set n to length of v */ | |
191 | |
192 | |
193 /* Generate the Huffman codes and for each, make the table entries */ | |
194 x[0] = i = 0; /* first Huffman code is zero */ | |
195 p = v; /* grab values in bit order */ | |
196 h = -1; /* no tables yet--level -1 */ | |
197 w = -l; /* bits decoded == (l * h) */ | |
198 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ | |
199 q = (inflate_huft *)Z_NULL; /* ditto */ | |
200 z = 0; /* ditto */ | |
201 | |
202 /* go through the bit lengths (k already is bits in shortest code) */ | |
203 for (; k <= g; k++) | |
204 { | |
205 a = c[k]; | |
206 while (a--) | |
207 { | |
208 /* here i is the Huffman code of length k bits for value *p */ | |
209 /* make tables up to required level */ | |
210 while (k > w + l) | |
211 { | |
212 h++; | |
213 w += l; /* previous table always l bits */ | |
214 | |
215 /* compute minimum size table less than or equal to l bits */ | |
216 z = g - w; | |
217 z = z > (uInt)l ? l : z; /* table size upper limit */ | |
218 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |
219 { /* too few codes for k-w bit table */ | |
220 f -= a + 1; /* deduct codes from patterns left */ | |
221 xp = c + k; | |
222 if (j < z) | |
223 while (++j < z) /* try smaller tables up to z bits */ | |
224 { | |
225 if ((f <<= 1) <= *++xp) | |
226 break; /* enough codes to use up j bits */ | |
227 f -= *xp; /* else deduct codes from patterns */ | |
228 } | |
229 } | |
230 z = 1 << j; /* table entries for j-bit table */ | |
231 | |
232 /* allocate new table */ | |
233 if (*hn + z > MANY) /* (note: doesn't matter for fixed) */ | |
234 return Z_MEM_ERROR; /* not enough memory */ | |
235 u[h] = q = hp + *hn; | |
236 *hn += z; | |
237 | |
238 /* connect to last table, if there is one */ | |
239 if (h) | |
240 { | |
241 x[h] = i; /* save pattern for backing up */ | |
242 r.bits = (Byte)l; /* bits to dump before this table */ | |
243 r.exop = (Byte)j; /* bits in this table */ | |
244 j = i >> (w - l); | |
245 r.base = (uInt)(q - u[h-1] - j); /* offset to this table */ | |
246 u[h-1][j] = r; /* connect to last table */ | |
247 } | |
248 else | |
249 *t = q; /* first table is returned result */ | |
250 } | |
251 | |
252 /* set up table entry in r */ | |
253 r.bits = (Byte)(k - w); | |
254 if (p >= v + n) | |
255 r.exop = 128 + 64; /* out of values--invalid code */ | |
256 else if (*p < s) | |
257 { | |
258 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ | |
259 r.base = *p++; /* simple code is just the value */ | |
260 } | |
261 else | |
262 { | |
263 r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ | |
264 r.base = d[*p++ - s]; | |
265 } | |
266 | |
267 /* fill code-like entries with r */ | |
268 f = 1 << (k - w); | |
269 for (j = i >> w; j < z; j += f) | |
270 q[j] = r; | |
271 | |
272 /* backwards increment the k-bit code i */ | |
273 for (j = 1 << (k - 1); i & j; j >>= 1) | |
274 i ^= j; | |
275 i ^= j; | |
276 | |
277 /* backup over finished tables */ | |
278 mask = (1 << w) - 1; /* needed on HP, cc -O bug */ | |
279 while ((i & mask) != x[h]) | |
280 { | |
281 h--; /* don't need to update q */ | |
282 w -= l; | |
283 mask = (1 << w) - 1; | |
284 } | |
285 } | |
286 } | |
287 | |
288 | |
289 /* Return Z_BUF_ERROR if we were given an incomplete table */ | |
290 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; | |
291 } | |
292 | |
293 | |
294 int inflate_trees_bits(c, bb, tb, hp, z) | |
295 uIntf *c; /* 19 code lengths */ | |
296 uIntf *bb; /* bits tree desired/actual depth */ | |
297 inflate_huft * FAR *tb; /* bits tree result */ | |
298 inflate_huft *hp; /* space for trees */ | |
299 z_streamp z; /* for messages */ | |
300 { | |
301 int r; | |
302 uInt hn = 0; /* hufts used in space */ | |
303 uIntf *v; /* work area for huft_build */ | |
304 | |
305 if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) | |
306 return Z_MEM_ERROR; | |
307 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, | |
308 tb, bb, hp, &hn, v); | |
309 if (r == Z_DATA_ERROR) | |
310 z->msg = (char*)"oversubscribed dynamic bit lengths tree"; | |
311 else if (r == Z_BUF_ERROR || *bb == 0) | |
312 { | |
313 z->msg = (char*)"incomplete dynamic bit lengths tree"; | |
314 r = Z_DATA_ERROR; | |
315 } | |
316 ZFREE(z, v); | |
317 return r; | |
318 } | |
319 | |
320 | |
321 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z) | |
322 uInt nl; /* number of literal/length codes */ | |
323 uInt nd; /* number of distance codes */ | |
324 uIntf *c; /* that many (total) code lengths */ | |
325 uIntf *bl; /* literal desired/actual bit depth */ | |
326 uIntf *bd; /* distance desired/actual bit depth */ | |
327 inflate_huft * FAR *tl; /* literal/length tree result */ | |
328 inflate_huft * FAR *td; /* distance tree result */ | |
329 inflate_huft *hp; /* space for trees */ | |
330 z_streamp z; /* for messages */ | |
331 { | |
332 int r; | |
333 uInt hn = 0; /* hufts used in space */ | |
334 uIntf *v; /* work area for huft_build */ | |
335 | |
336 /* allocate work area */ | |
337 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
338 return Z_MEM_ERROR; | |
339 | |
340 /* build literal/length tree */ | |
341 r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); | |
342 if (r != Z_OK || *bl == 0) | |
343 { | |
344 if (r == Z_DATA_ERROR) | |
345 z->msg = (char*)"oversubscribed literal/length tree"; | |
346 else if (r != Z_MEM_ERROR) | |
347 { | |
348 z->msg = (char*)"incomplete literal/length tree"; | |
349 r = Z_DATA_ERROR; | |
350 } | |
351 ZFREE(z, v); | |
352 return r; | |
353 } | |
354 | |
355 /* build distance tree */ | |
356 r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); | |
357 if (r != Z_OK || (*bd == 0 && nl > 257)) | |
358 { | |
359 if (r == Z_DATA_ERROR) | |
360 z->msg = (char*)"oversubscribed distance tree"; | |
361 else if (r == Z_BUF_ERROR) { | |
362 #ifdef PKZIP_BUG_WORKAROUND | |
363 r = Z_OK; | |
364 } | |
365 #else | |
366 z->msg = (char*)"incomplete distance tree"; | |
367 r = Z_DATA_ERROR; | |
368 } | |
369 else if (r != Z_MEM_ERROR) | |
370 { | |
371 z->msg = (char*)"empty distance tree with lengths"; | |
372 r = Z_DATA_ERROR; | |
373 } | |
374 ZFREE(z, v); | |
375 return r; | |
376 #endif | |
377 } | |
378 | |
379 /* done */ | |
380 ZFREE(z, v); | |
381 return Z_OK; | |
382 } | |
383 | |
384 | |
385 /* build fixed tables only once--keep them here */ | |
386 #ifdef BUILDFIXED | |
387 local int fixed_built = 0; | |
388 #define FIXEDH 544 /* number of hufts used by fixed tables */ | |
389 local inflate_huft fixed_mem[FIXEDH]; | |
390 local uInt fixed_bl; | |
391 local uInt fixed_bd; | |
392 local inflate_huft *fixed_tl; | |
393 local inflate_huft *fixed_td; | |
394 #else | |
395 #include "inffixed.h" | |
396 #endif | |
397 | |
398 | |
399 int inflate_trees_fixed(bl, bd, tl, td, z) | |
400 uIntf *bl; /* literal desired/actual bit depth */ | |
401 uIntf *bd; /* distance desired/actual bit depth */ | |
402 inflate_huft * FAR *tl; /* literal/length tree result */ | |
403 inflate_huft * FAR *td; /* distance tree result */ | |
404 z_streamp z; /* for memory allocation */ | |
405 { | |
406 #ifdef BUILDFIXED | |
407 /* build fixed tables if not already */ | |
408 if (!fixed_built) | |
409 { | |
410 int k; /* temporary variable */ | |
411 uInt f = 0; /* number of hufts used in fixed_mem */ | |
412 uIntf *c; /* length list for huft_build */ | |
413 uIntf *v; /* work area for huft_build */ | |
414 | |
415 /* allocate memory */ | |
416 if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
417 return Z_MEM_ERROR; | |
418 if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
419 { | |
420 ZFREE(z, c); | |
421 return Z_MEM_ERROR; | |
422 } | |
423 | |
424 /* literal table */ | |
425 for (k = 0; k < 144; k++) | |
426 c[k] = 8; | |
427 for (; k < 256; k++) | |
428 c[k] = 9; | |
429 for (; k < 280; k++) | |
430 c[k] = 7; | |
431 for (; k < 288; k++) | |
432 c[k] = 8; | |
433 fixed_bl = 9; | |
434 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, | |
435 fixed_mem, &f, v); | |
436 | |
437 /* distance table */ | |
438 for (k = 0; k < 30; k++) | |
439 c[k] = 5; | |
440 fixed_bd = 5; | |
441 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, | |
442 fixed_mem, &f, v); | |
443 | |
444 /* done */ | |
445 ZFREE(z, v); | |
446 ZFREE(z, c); | |
447 fixed_built = 1; | |
448 } | |
449 #endif | |
450 *bl = fixed_bl; | |
451 *bd = fixed_bd; | |
452 *tl = fixed_tl; | |
453 *td = fixed_td; | |
454 return Z_OK; | |
455 } |