Mercurial > traipse_dev
view upmana/mercurial/mpatch.py @ 157:e564a01d1324 alpha
Traipse Alpha 'OpenRPG' {091125-03}
Traipse is a distribution of OpenRPG that is designed to be easy to setup and go.
Traipse also makes it easy for developers to work on code without fear of
sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the
code. 'Ornery-Orc's main goal is to offer more advanced features and enhance the
productivity of the user.
Update Summary (Keeping up with Beta)
Added Bookmarks
Fix to Remote Admin Commands
Minor fix to text based Server
Fix to Pretty Print, from Core
Fix to Splitter Nodes not being created
Fix to massive amounts of images loading, from Core
Added 'boot' command to remote admin
Added confirmation window for sent nodes
Minor changes to allow for portability to an OpenSUSE linux OS
Miniatures Layer pop up box allows users to turn off Mini labels, from FlexiRPG
Zoom Mouse plugin added
Images added to Plugin UI
Switching to Element Tree
Map efficiency, from FlexiRPG
Added Status Bar to Update Manager
default_manifest.xml renamed to default_upmana.xml
Cleaner clode for saved repositories
New TrueDebug Class in orpg_log (See documentation for usage)
Mercurial's hgweb folder is ported to upmana
Pretty important update that can help remove thousands of dead children from your
gametree.
Children, <forms />, <group_atts />, <horizontal />, <cols />, <rows />, <height
/>, etc... are all tags now. Check your gametree and look for dead children!!
New Gametree Recursion method, mapping, and context sensitivity. !Infinite Loops
return error instead of freezing the software!
New Syntax added for custom PC sheets
Tip of the Day added, from Core and community
Fixed Whiteboard ID to prevent random line or text deleting. Modified ID's to
prevent non updated clients from ruining the fix.
author | sirebral |
---|---|
date | Wed, 25 Nov 2009 14:23:46 -0600 |
parents | 496dbf12a6cb |
children |
line wrap: on
line source
# mpatch.py - Python implementation of mpatch.c # # Copyright 2009 Matt Mackall <mpm@selenic.com> and others # # This software may be used and distributed according to the terms of the # GNU General Public License version 2, incorporated herein by reference. import struct try: from cStringIO import StringIO except ImportError: from StringIO import StringIO # This attempts to apply a series of patches in time proportional to # the total size of the patches, rather than patches * len(text). This # means rather than shuffling strings around, we shuffle around # pointers to fragments with fragment lists. # # When the fragment lists get too long, we collapse them. To do this # efficiently, we do all our operations inside a buffer created by # mmap and simply use memmove. This avoids creating a bunch of large # temporary string buffers. def patches(a, bins): if not bins: return a plens = [len(x) for x in bins] pl = sum(plens) bl = len(a) + pl tl = bl + bl + pl # enough for the patches and two working texts b1, b2 = 0, bl if not tl: return a m = StringIO() def move(dest, src, count): """move count bytes from src to dest The file pointer is left at the end of dest. """ m.seek(src) buf = m.read(count) m.seek(dest) m.write(buf) # load our original text m.write(a) frags = [(len(a), b1)] # copy all the patches into our segment so we can memmove from them pos = b2 + bl m.seek(pos) for p in bins: m.write(p) def pull(dst, src, l): # pull l bytes from src while l: f = src.pop(0) if f[0] > l: # do we need to split? src.insert(0, (f[0] - l, f[1] + l)) dst.append((l, f[1])) return dst.append(f) l -= f[0] def collect(buf, list): start = buf for l, p in list: move(buf, p, l) buf += l return (buf - start, start) for plen in plens: # if our list gets too long, execute it if len(frags) > 128: b2, b1 = b1, b2 frags = [collect(b1, frags)] new = [] end = pos + plen last = 0 while pos < end: m.seek(pos) p1, p2, l = struct.unpack(">lll", m.read(12)) pull(new, frags, p1 - last) # what didn't change pull([], frags, p2 - p1) # what got deleted new.append((l, pos + 12)) # what got added pos += l + 12 last = p2 frags = new + frags # what was left at the end t = collect(b2, frags) m.seek(t[1]) return m.read(t[0]) def patchedsize(orig, delta): outlen, last, bin = 0, 0, 0 binend = len(delta) data = 12 while data <= binend: decode = delta[bin:bin + 12] start, end, length = struct.unpack(">lll", decode) if start > end: break bin = data + length data = bin + 12 outlen += start - last last = end outlen += length if bin != binend: raise Exception("patch cannot be decoded") outlen += orig - last return outlen