view orpg/dieroller/rollers/sr4.py @ 217:c719a07cd28d beta

Traipse Beta 'OpenRPG' {100430-01} Traipse is a distribution of OpenRPG that is designed to be easy to setup and go. Traipse also makes it easy for developers to work on code without fear of sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code. 'Ornery-Orc's main goal is to offer more advanced features and enhance the productivity of the user. Update Summary (Patch-2) New Features: New Namespace method with two new syntaxes New Namespace Internal is context sensitive, always! New Namespace External is 'as narrow as you make it' New Namespace FutureCheck helps ensure you don't receive an incorrect node New PluginDB access for URL2Link plugin New to Forms, they now show their content in Design Mode New to Update Manager, checks Repo for updates on software start New to Mini Lin node, change title in design mode Fixes: Fix to Server GUI startup errors Fix to Server GUI Rooms tab updating Fix to Chat and Settings if non existant die roller is picked Fix to Dieroller and .open() used with .vs(). Successes are correctly calculated Fix to Alias Lib's Export to Tree, Open, Save features Fix to alias node, now works properly Fix to Splitter node, minor GUI cleanup Fix to Backgrounds not loading through remote loader Fix to Node name errors Fix to rolling dice in chat Whispers Fix to Splitters Sizing issues Fix to URL2Link plugin, modified regex compilation should remove memory leak Fix to mapy.py, a roll back due to zoomed grid issues Fix to whiteboard_handler, Circles work by you clicking the center of the circle Fix to Servers parse_incoming_dom which was outdated and did not respect XML Fix to a broken link in the server welcome message Fix to InterParse and logger requiring traceback Fix to Update Manager Status Bar Fix to failed image and erroneous pop up Fix to Mini Lib node that was preventing use Fix to plugins that parce dice but did not call InterParse Fix to nodes for name changing by double click Fix to Game Tree, node ordering on drag and drop corrected Daily-01: Again forgot the version number Files affect in last update: Currently selected branch: beta Author: sirebral Files Modified (in update): orpg/chat/commands.py orpg/gametree/gametree.py orpg/gametree/nodehandlers/containers.py orpg/gametree/nodehandlers/minilib.py orpg/pluginhandler.py plugins/xxhiddendice.py plugins/xxsimpleinit.py
author sirebral
date Fri, 30 Apr 2010 05:44:05 -0500
parents ff48c2741fe7
children
line wrap: on
line source

## a vs die roller as used by WOD games
#!/usr/bin/env python
# Copyright (C) 2000-2001 The OpenRPG Project
#
#   openrpg-dev@lists.sourceforge.net
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
# --
#
# File: sr4.py
# Author: Veggiesama, ripped straight from Michael Edwards (AKA akoman)
# Maintainer:
# Version: 1.1
#
# 1.1: Now with glitch and critical glitch detection!
# 1.1: Cleaned up some of the output to make it simpler.
#
# Description: Modified from the original Shadowrun dieroller by akoman,
#              but altered to follow the new Shadowrun 4th Ed dice system.
#
#              SR4 VS
#              Typing [Xd6.vs(Y)] will roll X dice, checking each die
#              roll against the MIN_TARGET_NUMBER (default: 5). If it
#              meets or beats it, it counts as a hit. If the total hits
#              meet or beat the Y value (threshold), there's a success.
#
#              SR4 EDGE VS
#              Identical to the above function, except it looks like
#              [Xd6.edge(Y)] and follows the "Rule of Six". That rule
#              states any roll of 6 is counted as a hit and rerolled
#              with a potential to score more hits. The "Edge" bonus
#              dice must be included into X.
#
#              SR4 INIT
#              Typing [Xd6.init(Y)] will roll X dice, checking each
#              die for a hit. All hits are added to Y (the init attrib
#              of the player), to give an Init Score for the combat.
#
#              SR4 EDGE INIT
#              Typing [Xd6.initedge(Y)] or [Xd6.edgeinit(Y)] will do
#              as above, except adding the possibility of Edge dice.
#
#              Note about non-traditional uses:
#              - D6's are not required. This script will work with any
#                die possible, and the "Rule of Six" will only trigger
#                on the highest die roll possible. Not throughly tested.
#              - If you want to alter the minimum target number (ex.
#                score a hit on a 4, 5, or 6), scroll down and change
#                the global value MIN_TARGET_NUMBER to your liking.

__version__ = "1.1"

from std import std
from orpg.dieroller.base import *

MIN_TARGET_NUMBER = 5
GLITCH_NUMBER = 1

class sr4(std):
    name = "sr4"

    def __init__(self,source=[]):
        std.__init__(self,source)
        self.threshold = None
        self.init_attrib = None

    def vs(self,threshold=0):
        return sr4vs(self, threshold)

    def edge(self,threshold=0):
        return sr4vs(self, threshold, 1)

    def init(self,init_attrib=0):
        return sr4init(self, init_attrib)

    def initedge(self,init_attrib=0):
        return sr4init(self, init_attrib, 1)
    def edgeinit(self,init_attrib=0):
        return sr4init(self, init_attrib, 1)

    def countEdge(self,num):
        if num <= 1:
            self
        done = 1
        for i in range(len(self.data)):
            if (self.data[i].lastroll() >= num):
                # counts every rerolled 6 as a hit
                self.hits += 1
                self.data[i].extraroll()
                self.total += 1
                done = 0
            elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                self.ones += 1
            self.total += 1
        if done:
            return self
        else:
            return self.countEdge(num)

    def countHits(self,num):
        for i in range(len(self.data)):
            if (self.data[i].lastroll() >= MIN_TARGET_NUMBER):
                # (Rule of Six taken into account in countEdge(), not here)
                self.hits += 1
            elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                self.ones += 1
            self.total += 1

    def __str__(self):
        if len(self.data) > 0:
            self.hits = 0
            self.ones = 0
            self.total = 0
            for i in range(len(self.data)):
                if (self.data[i].lastroll() >= MIN_TARGET_NUMBER):
                    self.hits += 1
                elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                    self.ones += 1
                self.total += 1
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            myStr += "] " + CheckIfGlitch(self.ones, self.hits, self.total)
            myStr += "Hits: (" + str(self.hits) + ")"
        else:
            myStr = "[] = (0)"
        return myStr

die_rollers.register(sr4)

class sr4init(sr4):
    def __init__(self,source=[],init_attrib=1,edge=0):
        std.__init__(self,source)
        if init_attrib < 2:
            self.init_attrib = 2
        else:
            self.init_attrib = init_attrib
        self.dicesides = self[0].sides
        self.hits = 0
        self.ones = 0
        self.total = 0
        if edge:
            self.countEdge(self.dicesides)
        self.countHits(self.dicesides)

    def __str__(self):
        if len(self.data) > 0:
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            myStr += "] " + CheckIfGlitch(self.ones, self.hits, self.total)
            init_score = str(self.init_attrib + self.hits)
            myStr += "InitScore: " + str(self.init_attrib) + "+"
            myStr += str(self.hits) + " = (" + init_score + ")"
        else:
            myStr = "[] = (0)"
        return myStr

class sr4vs(sr4):
    def __init__(self,source=[], threshold=1, edge=0):
        std.__init__(self, source)
        if threshold < 0:
            self.threshold = 0
        else:
            self.threshold = threshold
        self.dicesides = self[0].sides
        self.hits = 0
        self.ones = 0
        self.total = 0
        if edge:
            self.countEdge(self.dicesides)
        self.countHits(self.dicesides)

    def __str__(self):
        if len(self.data) > 0:
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            #myStr += "] Threshold=" + str(self.threshold)
            myStr += "] vs " + str(self.threshold) + " "
            myStr += CheckIfGlitch(self.ones, self.hits, self.total)
            if self.hits >= self.threshold:
                myStr += "*SUCCESS* "
            else:
                myStr += "*FAILURE* "
            myStr += "Hits: (" + str(self.hits) + ")"
        else:
            myStr = "[] = (0)"
        return myStr

def CheckIfGlitch(ones, hits, total_dice):
    if (ones * 2) >= total_dice:
        if hits >= 1:
            return "*GLITCH* "
        else:
            return "*CRITICAL GLITCH* "
    else:
        return ""