view orpg/mapper/map_utils.py @ 245:682032381be8 beta

Traipse Beta 'OpenRPG' {101130-00} Traipse is a distribution of OpenRPG that is designed to be easy to setup and go. Traipse also makes it easy for developers to work on code without fear of sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code. 'Ornery-Orc's main goal is to offer more advanced features and enhance the productivity of the user. Update Summary (Closing/Closed) New Features: New to Map, can re-order Grid, Miniatures, and Whiteboard layer draw order New to Server GUI, can now clear log New Earthdawn Dieroller New IronClaw roller, sheet, and image Updates: Update to Warhammer PC Sheet. Rollers set as macros. Should work with little maintanence. Update to Browser Server window. Display rooms with ' " & cleaner Update to Server. Handles ' " & cleaner Update to Dieroller. Cleaner, more effecient expression system Update to Hidden Die plugin, allows for non standard dice rolls Fixes: Fix to InterParse that was causing an Infernal Loop with Namespace Internal Fix to XML data, removed old Minidom and switched to Element Tree Fix to Server that was causing eternal attempt to find a Server ID, in Register Rooms thread Fix to metaservers.xml file not being created Fix to Single and Double quotes in Whiteboard text Fix to Background images not showing when using the Image Server Fix to Duplicate chat names appearing Fix to Server GUI's logging output Fix to FNB.COLORFUL_TABS bug Fix to Gametree for XSLT Sheets Fix to Gametree for locating gametree files Fix to Send to Chat from Gametree Fix to Gametree, renaming and remapping operates correctly Fix to aliaslib, prevents error caused when SafeHTML is sent None
author sirebral
date Tue, 30 Nov 2010 02:34:58 -0600
parents 449a8900f9ac
children
line wrap: on
line source

"""
 file: map_utils.py

 This file contains generic utility functions
 for use in the openrpg mapping system
"""

import math
"""
 distance_between()
 Returns the distance between two points
"""
def distance_between( x1, y1, x2, y2 ):
   "Returns the distance between two points"
   dx = x2 - x1
   dy = y2 - y1
   return math.sqrt( dx*dx + dy*dy )

"""
 proximity_test()
 Tests if 'test_point' (T) is close (within 'threshold' units) to the
 line segment 'start_point' to 'end_point' (PQ).

 The closest point (R) to T on the line PQ is given by:
    R = P + u (Q - P)
 TR is perpendicular to PQ so:
    (T - R) dot (Q - P) = 0
 Solving these two equations gives the equation for u (see below).

 If u < 0 or u > 1 then R is not within the line segment and we simply
 test against point P or Q.
"""
def proximity_test( start_point, end_point, test_point, threshold ):
   "Test if a point is close to a line segment"
   x1,y1 = start_point
   x2,y2 = end_point
   xt,yt = test_point
   x1 = float(x1)
   x2 = float(x2)
   y1 = float(y1)
   y2 = float(y2)
   xt = float(xt)
   yt = float(yt)

   # Coincident points?
   if x1 == x2 and y1 == y2: d = distance_between(xt, yt, x1, y1)
   else:
       dx = x2 - x1
       dy = y2 - y1
       u = ((xt - x1) * dx + (yt - y1) * dy) / (dx*dx + dy*dy)
       if u < 0: d = distance_between(xt, yt, x1, y1)
       elif u > 1: d = distance_between(xt, yt, x2, y2)
       else:
           xr = x1 + u * dx
           yr = y1 + u * dy
           d = distance_between(xt, yt, xr, yr)
   return d <= threshold