view orpg/dieroller/sr4.py @ 118:217fb049bd00 alpha

Traipse Alpha 'OpenRPG' {091028-00} Traipse is a distribution of OpenRPG that is designed to be easy to setup and go. Traipse also makes it easy for developers to work on code without fear of sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code. 'Ornery-Orc's main goal is to offer more advanced features and enhance the productivity of the user. Update Summary: Adds Bookmarks (Alpha) with cool Smiley Star and Plus Symbol images! Changes made to the map for increased portability. SnowDog has changes planned in Core, though. Added an initial push to the BCG. Not much to see, just shows off how it is re-writing Main code. Fix to remote admin commands Minor fix to texted based server, works in /System/ folder Some Core changes to gametree to correctly disply Pretty Print, thanks David! Fix to Splitter Nodes not being created. Added images to Plugin Control panel for Autostart feature Fix to massive amounts of images loading; from Core fix to gsclient so with_statement imports Added 'boot' command to remote admin Prep work in Pass tool for remote admin rankings and different passwords, ei, Server, Admin, Moderator, etc. Remote Admin Commands more organized, more prep work. Added Confirmation window for sent nodes. Minor changes to allow for portability to an OpenSUSE linux OS (hopefully without breaking) {091028} 00: Made changes to gametree to start working with Element Tree, mostly from Core Minor changes to Map to start working with Element Tree, from Core Preliminary changes to map efficiency, from FlexiRPG Miniatures Layer pop up box allows users to turn off Mini labels, from FlexiRPG Changes to main.py to start working with Element Tree
author sirebral
date Wed, 28 Oct 2009 14:24:54 -0500
parents 449a8900f9ac
children bf799efe7a8a
line wrap: on
line source

## a vs die roller as used by WOD games
#!/usr/bin/env python
# Copyright (C) 2000-2001 The OpenRPG Project
#
#   openrpg-dev@lists.sourceforge.net
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
# --
#
# File: sr4.py
# Author: Veggiesama, ripped straight from Michael Edwards (AKA akoman)
# Maintainer:
# Version: 1.1
#
# 1.1: Now with glitch and critical glitch detection!
# 1.1: Cleaned up some of the output to make it simpler.
#
# Description: Modified from the original Shadowrun dieroller by akoman,
#              but altered to follow the new Shadowrun 4th Ed dice system.
#
#              SR4 VS
#              Typing [Xd6.vs(Y)] will roll X dice, checking each die
#              roll against the MIN_TARGET_NUMBER (default: 5). If it
#              meets or beats it, it counts as a hit. If the total hits
#              meet or beat the Y value (threshold), there's a success.
#
#              SR4 EDGE VS
#              Identical to the above function, except it looks like
#              [Xd6.edge(Y)] and follows the "Rule of Six". That rule
#              states any roll of 6 is counted as a hit and rerolled
#              with a potential to score more hits. The "Edge" bonus
#              dice must be included into X.
#
#              SR4 INIT
#              Typing [Xd6.init(Y)] will roll X dice, checking each
#              die for a hit. All hits are added to Y (the init attrib
#              of the player), to give an Init Score for the combat.
#
#              SR4 EDGE INIT
#              Typing [Xd6.initedge(Y)] or [Xd6.edgeinit(Y)] will do
#              as above, except adding the possibility of Edge dice.
#
#              Note about non-traditional uses:
#              - D6's are not required. This script will work with any
#                die possible, and the "Rule of Six" will only trigger
#                on the highest die roll possible. Not throughly tested.
#              - If you want to alter the minimum target number (ex.
#                score a hit on a 4, 5, or 6), scroll down and change
#                the global value MIN_TARGET_NUMBER to your liking.

from die import *

__version__ = "1.1"

MIN_TARGET_NUMBER = 5
GLITCH_NUMBER = 1

class sr4(std):
    
    def __init__(self,source=[]):
        std.__init__(self,source)
        self.threshold = None
        self.init_attrib = None

    
    def vs(self,threshold=0):
        return sr4vs(self, threshold)

    
    def edge(self,threshold=0):
        return sr4vs(self, threshold, 1)

    
    def init(self,init_attrib=0):
        return sr4init(self, init_attrib)

    
    def initedge(self,init_attrib=0):
        return sr4init(self, init_attrib, 1)
    
    def edgeinit(self,init_attrib=0):
        return sr4init(self, init_attrib, 1)

    
    def countEdge(self,num):
        if num <= 1:
            self
        done = 1
        for i in range(len(self.data)):
            if (self.data[i].lastroll() >= num):
               # counts every rerolled 6 as a hit
               self.hits += 1
               self.data[i].extraroll()
               self.total += 1
               done = 0
            elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                self.ones += 1
            self.total += 1
        if done:
            return self
        else:
            return self.countEdge(num)

    
    def countHits(self,num):
        for i in range(len(self.data)):
            if (self.data[i].lastroll() >= MIN_TARGET_NUMBER):
                # (Rule of Six taken into account in countEdge(), not here)
                self.hits += 1
            elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                self.ones += 1
            self.total += 1

    
    def __str__(self):
        if len(self.data) > 0:
            self.hits = 0
            self.ones = 0
            self.total = 0
            for i in range(len(self.data)):
                if (self.data[i].lastroll() >= MIN_TARGET_NUMBER):
                    self.hits += 1
                elif (self.data[i].lastroll() <= GLITCH_NUMBER):
                    self.ones += 1
                self.total += 1
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            myStr += "] " + CheckIfGlitch(self.ones, self.hits, self.total)
            myStr += "Hits: (" + str(self.hits) + ")"
        else:
            myStr = "[] = (0)"
        return myStr

class sr4init(sr4):
    
    def __init__(self,source=[],init_attrib=1,edge=0):
        std.__init__(self,source)
        if init_attrib < 2:
            self.init_attrib = 2
        else:
            self.init_attrib = init_attrib
        self.dicesides = self[0].sides
        self.hits = 0
        self.ones = 0
        self.total = 0
        if edge:
            self.countEdge(self.dicesides)
        self.countHits(self.dicesides)

    
    def __str__(self):
        if len(self.data) > 0:
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            myStr += "] " + CheckIfGlitch(self.ones, self.hits, self.total)
            init_score = str(self.init_attrib + self.hits)
            myStr += "InitScore: " + str(self.init_attrib) + "+"
            myStr += str(self.hits) + " = (" + init_score + ")"
        else:
            myStr = "[] = (0)"
        return myStr

class sr4vs(sr4):
    
    def __init__(self,source=[], threshold=1, edge=0):
        std.__init__(self, source)
        if threshold < 0:
            self.threshold = 0
        else:
            self.threshold = threshold
        self.dicesides = self[0].sides
        self.hits = 0
        self.ones = 0
        self.total = 0
        if edge:
            self.countEdge(self.dicesides)
        self.countHits(self.dicesides)

    
    def __str__(self):
        if len(self.data) > 0:
            firstpass = 0
            myStr = "["
            for a in self.data[0:]:
                if firstpass != 0:
                    myStr += ","
                firstpass = 1
                if a >= MIN_TARGET_NUMBER:
                    myStr += "<B>" + str(a) + "</B>"
                elif a <= GLITCH_NUMBER:
                    myStr += "<i>" + str(a) + "</i>"
                else:
                    myStr += str(a)
            #myStr += "] Threshold=" + str(self.threshold)
            myStr += "] vs " + str(self.threshold) + " "
            myStr += CheckIfGlitch(self.ones, self.hits, self.total)
            if self.hits >= self.threshold:
                myStr += "*SUCCESS* "
            else:
                myStr += "*FAILURE* "
            myStr += "Hits: (" + str(self.hits) + ")"
        else:
            myStr = "[] = (0)"
        return myStr


def CheckIfGlitch(ones, hits, total_dice):
    if (ones * 2) >= total_dice:
        if hits >= 1:
            return "*GLITCH* "
        else:
            return "*CRITICAL GLITCH* "
    else:
        return ""