view orpg/dieroller/shadowrun.py @ 159:033887bb8a86 alpha

Traipse Alpha 'OpenRPG' {091126-00} Traipse is a distribution of OpenRPG that is designed to be easy to setup and go. Traipse also makes it easy for developers to work on code without fear of sacrifice. 'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code. 'Ornery-Orc's main goal is to offer more advanced features and enhance the productivity of the user. Update Summary (Keeping up with Beta) New Features: Added Bookmarks Added 'boot' command to remote admin Added confirmation window for sent nodes Minor changes to allow for portability to an OpenSUSE linux OS Miniatures Layer pop up box allows users to turn off Mini labels, from FlexiRPG Zoom Mouse plugin added Images added to Plugin UI Switching to Element Tree Map efficiency, from FlexiRPG Added Status Bar to Update Manager New TrueDebug Class in orpg_log (See documentation for usage) Portable Mercurial Tip of the Day added, from Core and community New Reference Syntax added for custom PC sheets New Child Reference for gametree New Gametree Recursion method, mapping, context sensitivity, and effeciency.. New Features node with bonus nodes and Node Referencing help added Fixes: Fix to Text based Server Fix to Remote Admin Commands Fix to Pretty Print, from Core Fix to Splitter Nodes not being created Fix to massive amounts of images loading, from Core Fix to Map from gametree not showing to all clients Fix to gametree about menus Fix to Password Manager check on startup Fix to PC Sheets from tool nodes. They now use the tabber_panel Fixed Whiteboard ID to prevent random line or text deleting. Modified ID's to prevent non updated clients from ruining the fix. *Whiteboard from Core not showing* default_manifest.xml renamed to default_upmana.xml Fix to Update Manager; cleaner clode for saved repositories
author sirebral
date Thu, 26 Nov 2009 14:24:19 -0600
parents bf799efe7a8a
children
line wrap: on
line source

## a vs die roller as used by WOD games
#!/usr/bin/env python
# Copyright (C) 2000-2001 The OpenRPG Project
#
#       openrpg-dev@lists.sourceforge.net
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
# --
#
# File: shadowrun.py
# Author: Michael Edwards (AKA akoman)
# Maintainer:
# Version: 1.0
#
# Description: A modified form of the World of Darkness die roller to
#              conform to ShadowRun rules-sets. Thanks to the ORPG team
#              for the original die rollers.
#              Thanks to tdb30_ for letting me think out loud with him.
#         I take my hint from the HERO dieroller: It creates for wildly variant options
#         Further, .vs and .open do not work together in any logical way. One method of
#         chaining them results in a [Bad Dice Format] and the other results in a standard
#         output from calling .open()

#         vs is a classic 'comparison' method function, with one difference. It uses a
#           c&p'ed .open(int) from die.py but makes sure that once the target has been exceeded
#           then it stops rerolling. The overhead from additional boolean checking is probably
#           greater than the gains from not over-rolling. The behaviour is in-line with
#           Shadowrun Third Edition which recommends not rolling once you've exceeded the target
#         open is an override of .open(int) in die.py. The reason is pretty simple. In die.py open
#           refers to 'open-ended rolling' whereas in Shadowrun it refers to an 'Open Test' where
#           the objective is to find the highest die total out of rolled dice. This is then generally
#           used as the target in a 'Success Test' (for which .vs functions)
from die import *

__version__ = "1.0"

class shadowrun(std):
    
    def __init__(self,source=[],target=2):
        std.__init__(self,source)

    
    def vs(self,target):
        return srVs(self, target)

    
    def open(self):
        return srOpen(self)

class srVs(std):
    
    def __init__(self,source=[], target=2):
        std.__init__(self, source)
        # In Shadowrun, not target number may be below 2. All defaults are set to two and any
        # thing lower is scaled up.
        if target < 2:
            self.target = 2
        else:
            self.target = target
        # Shadowrun was built to use the d6 but in the interests of experimentation I have
        # made the dieroller generic enough to use any die type
        self.openended(self[0].sides)

    
    def openended(self,num):
        if num <= 1:
            self
        done = 1
        for i in range(len(self.data)):
            if (self.data[i].lastroll() >= num) and (self.data[i] < self.target):
                self.data[i].extraroll()
                done = 0
        if done:
            return self
        else:
            return self.openended(num)

    
    def __sum__(self):
        s = 0
        for r in self.data:
            if r >= self.target:
                s += 1
        return s

    
    def __str__(self):
        if len(self.data) > 0:
            myStr = "[" + str(self.data[0])
            for a in self.data[1:]:
                myStr += ","
                myStr += str(a)
            myStr += "] vs " + str(self.target) + " for a result of (" + str(self.sum()) + ")"
        else:
            myStr = "[] = (0)"

        return myStr

class srOpen(std):
    
    def __init__(self,source=[]):
        std.__init__(self,source)
        self.openended(self[0].sides)

    
    def openended(self,num):
        if num <= 1:
            self
        done = 1
        for i in range(len(self.data)):
            if self.data[i].lastroll() == num:
                self.data[i].extraroll()
                done = 0
        if done:
            return self
        else:
            return self.openended(num)

    
    def __sum__(self):
        s = 0
        for r in self.data:
            if r > s:
                s = r
        return s

    
    def __str__(self):
        if len(self.data) > 0:
            myStr = "[" + str(self.data[0])
            for a in self.data[1:]:
                myStr += ","
                myStr += str(a)
            self.takeHighest(1)
            myStr += "] for a result of (" + str(self.__sum__().__int__()) + ")"
        else:
            myStr = "[] = (0)"

        return myStr