Mercurial > pylearn
changeset 296:f5d33f9c0b9c
ApplyFunctionDataSet passing
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Fri, 06 Jun 2008 17:50:29 -0400 |
parents | f7924e13e426 |
children | d08b71d186c8 |
files | dataset.py |
diffstat | 1 files changed, 15 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/dataset.py Fri Jun 06 16:15:47 2008 -0400 +++ b/dataset.py Fri Jun 06 17:50:29 2008 -0400 @@ -1204,7 +1204,7 @@ A L{DataSet} that contains as fields the results of applying a given function example-wise or minibatch-wise to all the fields of an input dataset. The output of the function should be an iterable - (e.g. a list or a Example) over the resulting values. + (e.g. a list or a LookupList) over the resulting values. The function take as input the fields of the dataset, not the examples. @@ -1221,7 +1221,9 @@ If the values_{h,v}stack functions are not provided, then the input_dataset.values{H,V}Stack functions are used by default. + """ + def __init__(self,input_dataset,function,output_names,minibatch_mode=True, values_hstack=None,values_vstack=None, description=None,fieldtypes=None): @@ -1253,27 +1255,27 @@ return self.output_names def minibatches_nowrap(self, fieldnames, *args, **kwargs): - for input_fields in self.input_dataset.minibatches_nowrap(fieldnames, *args, **kwargs): + all_input_fieldNames = self.input_dataset.fieldNames() + mbnw = self.input_dataset.minibatches_nowrap - #function_inputs = self.input_iterator.next() + for input_fields in mbnw(all_input_fieldNames, *args, **kwargs): if self.minibatch_mode: - function_outputs = self.function(*input_fields) + all_output_fields = self.function(*input_fields) else: - input_examples = zip(*input_fields) + input_examples = zip(*input_fields) #makes so that [i] means example i output_examples = [self.function(*input_example) for input_example in input_examples] - function_outputs = [self.valuesVStack(name,values) - for name,values in zip(self.output_names, - zip(*output_examples))] - all_outputs = Example(self.output_names, function_outputs) - print 'input_fields', input_fields - print 'all_outputs', all_outputs + all_output_fields = zip(*output_examples) + + all_outputs = Example(self.output_names, all_output_fields) + #print 'input_fields', input_fields + #print 'all_outputs', all_outputs if fieldnames==self.output_names: rval = all_outputs else: rval = Example(fieldnames,[all_outputs[name] for name in fieldnames]) - print 'rval', rval - print '--------' + #print 'rval', rval + #print '--------' yield rval def untested__iter__(self): # only implemented for increased efficiency @@ -1295,7 +1297,6 @@ return Example(self.output_dataset.output_names,function_outputs) return ApplyFunctionSingleExampleIterator(self) - def supervised_learning_dataset(src_dataset,input_fields,target_fields,weight_field=None): """ Wraps an arbitrary L{DataSet} into one for supervised learning tasks