Mercurial > pylearn
changeset 577:df2e2c7ba4ac
merge
author | Olivier Breuleux <breuleuo@iro.umontreal.ca> |
---|---|
date | Thu, 04 Dec 2008 16:51:58 -0500 |
parents | ef424abb7458 (current diff) cf19655ec48b (diff) |
children | a027c4cedf98 |
files | |
diffstat | 2 files changed, 31 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/rnn.py Thu Dec 04 16:51:46 2008 -0500 +++ b/pylearn/algorithms/rnn.py Thu Dec 04 16:51:58 2008 -0500 @@ -3,7 +3,7 @@ from theano import Op, Apply, tensor as T, Module, Member, Method, Mode, compile from theano.gof import OpSub, TopoOptimizer -from .minimizer import make_minimizer # minimizer +from minimizer import make_minimizer # minimizer from theano.printing import Print import sgd #until Olivier's module-import thing works better @@ -160,17 +160,17 @@ obj.u = rng.randn(n_hid, n_out) * 0.01 obj.c = N.zeros(n_out) obj.minimizer.initialize() - def __eq__(self, other): + def _instance__eq__(self, other): if not isinstance(other.component, ExampleRNN): raise NotImplemented #we compare the member. - if self.n_vis != other.n_vis or slef.n_hid != other.n_hid or self.n_out != other.n_out: - return False +# if self.n_vis != other.n_vis or slef.n_hid != other.n_hid or self.n_out != other.n_out: +# return False if (N.abs(self.z0-other.z0)<1e-8).all() and (N.abs(self.v-other.v)<1e-8).all() and (N.abs(self.b-other.b)<1e-8).all() and (N.abs(self.w-other.w)<1e-8).all() and (N.abs(self.u-other.u)<1e-8).all() and (N.abs(self.c-other.c)<1e-8).all() and (N.abs(self.z0-other.z0)<1e-8).all(): return True return False - def __hash__(self): + def _instance__hash__(self): raise NotImplemented def test_example_rnn(): @@ -214,23 +214,34 @@ LAG = 4 y[LAG:] = x[:-LAG, 0:n_out] - minimizer_fn = make_minimizer('sgd', stepsize = 0.001, WEIRD_STUFF = False) - rnn_module = ExampleRNN(n_vis, n_hid, n_out, minimizer_fn) + minimizer_fn1 = make_minimizer('sgd', stepsize = 0.001, WEIRD_STUFF = False) + minimizer_fn2 = make_minimizer('sgd', stepsize = 0.001, WEIRD_STUFF = True) + rnn_module1 = ExampleRNN(n_vis, n_hid, n_out, minimizer_fn1) + rnn_module2 = ExampleRNN(n_vis, n_hid, n_out, minimizer_fn2) + rnn1 = rnn_module2.make(mode='FAST_RUN') + rnn2 = rnn_module1.make(mode='FAST_COMPILE') + topo1=rnn1.minimizer.step_cost.maker.env.toposort() + topo2=rnn2.minimizer.step_cost.maker.env.toposort() + if 0: + for i in range(len(topo1)): + print '1',i, topo1[i] + print '2',i, topo2[i] - rnn1 = rnn_module.make(mode='FAST_RUN') + - rng1 = N.random.RandomState(7722342) - - niter=15 + niter=3 for i in xrange(niter): - rnn1.minimizer.step_cost(x, y) + rnn1.minimizer.step(x, y) + rnn2.minimizer.step(x, y) - minimizer_fn = make_minimizer('sgd', stepsize = 0.001, WEIRD_STUFF = True) + # assert rnn1.n_vis != rnn2.n_vis or slef.n_hid != rnn2.n_hid or rnn1.n_out != rnn2.n_out + assert (N.abs(rnn1.z0-rnn2.z0)<1e-8).all() + assert (N.abs(rnn1.v-rnn2.v)<1e-8).all() and (N.abs(rnn1.b-rnn2.b)<1e-8).all() and (N.abs(rnn1.w-rnn2.w)<1e-8).all() and (N.abs(rnn1.u-rnn2.u)<1e-8).all() and (N.abs(rnn1.c-rnn2.c)<1e-8).all() - rnn_module = ExampleRNN(n_vis, n_hid, n_out, minimizer_fn) - rnn2 = rnn_module.make(mode='FAST_RUN') + # assert b - for i in xrange(niter): - rnn2.minimizer.step_cost(x, y) - - assert rnn1 == rnn2 +if __name__ == '__main__': +# from theano.tests import main +# main(__file__) +# test_example_rnn() + test_WEIRD_STUFF()
--- a/pylearn/algorithms/sgd.py Thu Dec 04 16:51:46 2008 -0500 +++ b/pylearn/algorithms/sgd.py Thu Dec 04 16:51:58 2008 -0500 @@ -4,7 +4,7 @@ from theano.compile import module from theano import tensor as T -from .minimizer import minimizer_factory +from minimizer import minimizer_factory class StochasticGradientDescent(module.FancyModule): """Fixed stepsize gradient descent"""